Upload folder using huggingface_hub
Browse files- .gitattributes +7 -32
- README.md +141 -3
- config.json +33 -0
- model.safetensors +3 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- tokenizer_config.json +1 -0
.gitattributes
CHANGED
@@ -1,35 +1,10 @@
|
|
1 |
-
*.
|
2 |
-
*.
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.
|
31 |
-
*.
|
32 |
-
*.
|
33 |
-
|
34 |
-
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
4 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
10 |
+
sentencepiece.bpe.model filter=lfs diff=lfs merge=lfs -text
|
|
README.md
CHANGED
@@ -1,3 +1,141 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- en
|
5 |
+
- fr
|
6 |
+
- es
|
7 |
+
- de
|
8 |
+
- el
|
9 |
+
- bg
|
10 |
+
- ru
|
11 |
+
- tr
|
12 |
+
- ar
|
13 |
+
- vi
|
14 |
+
- th
|
15 |
+
- zh
|
16 |
+
- hi
|
17 |
+
- sw
|
18 |
+
- ur
|
19 |
+
tags:
|
20 |
+
- text-classification
|
21 |
+
- pytorch
|
22 |
+
- tensorflow
|
23 |
+
datasets:
|
24 |
+
- multi_nli
|
25 |
+
- xnli
|
26 |
+
license: mit
|
27 |
+
pipeline_tag: zero-shot-classification
|
28 |
+
widget:
|
29 |
+
- text: "За кого вы голосуете в 2020 году?"
|
30 |
+
candidate_labels: "politique étrangère, Europe, élections, affaires, politique"
|
31 |
+
multi_class: true
|
32 |
+
- text: "لمن تصوت في 2020؟"
|
33 |
+
candidate_labels: "السياسة الخارجية, أوروبا, الانتخابات, الأعمال, السياسة"
|
34 |
+
multi_class: true
|
35 |
+
- text: "2020'de kime oy vereceksiniz?"
|
36 |
+
candidate_labels: "dış politika, Avrupa, seçimler, ticaret, siyaset"
|
37 |
+
multi_class: true
|
38 |
+
---
|
39 |
+
|
40 |
+
# xlm-roberta-large-xnli
|
41 |
+
|
42 |
+
## Model Description
|
43 |
+
|
44 |
+
This model takes [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) and fine-tunes it on a combination of NLI data in 15 languages. It is intended to be used for zero-shot text classification, such as with the Hugging Face [ZeroShotClassificationPipeline](https://huggingface.co/transformers/master/main_classes/pipelines.html#transformers.ZeroShotClassificationPipeline).
|
45 |
+
|
46 |
+
## Intended Usage
|
47 |
+
|
48 |
+
This model is intended to be used for zero-shot text classification, especially in languages other than English. It is fine-tuned on XNLI, which is a multilingual NLI dataset. The model can therefore be used with any of the languages in the XNLI corpus:
|
49 |
+
|
50 |
+
- English
|
51 |
+
- French
|
52 |
+
- Spanish
|
53 |
+
- German
|
54 |
+
- Greek
|
55 |
+
- Bulgarian
|
56 |
+
- Russian
|
57 |
+
- Turkish
|
58 |
+
- Arabic
|
59 |
+
- Vietnamese
|
60 |
+
- Thai
|
61 |
+
- Chinese
|
62 |
+
- Hindi
|
63 |
+
- Swahili
|
64 |
+
- Urdu
|
65 |
+
|
66 |
+
Since the base model was pre-trained trained on 100 different languages, the
|
67 |
+
model has shown some effectiveness in languages beyond those listed above as
|
68 |
+
well. See the full list of pre-trained languages in appendix A of the
|
69 |
+
[XLM Roberata paper](https://arxiv.org/abs/1911.02116)
|
70 |
+
|
71 |
+
For English-only classification, it is recommended to use
|
72 |
+
[bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) or
|
73 |
+
[a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla).
|
74 |
+
|
75 |
+
#### With the zero-shot classification pipeline
|
76 |
+
|
77 |
+
The model can be loaded with the `zero-shot-classification` pipeline like so:
|
78 |
+
|
79 |
+
```python
|
80 |
+
from transformers import pipeline
|
81 |
+
classifier = pipeline("zero-shot-classification",
|
82 |
+
model="joeddav/xlm-roberta-large-xnli")
|
83 |
+
```
|
84 |
+
|
85 |
+
You can then classify in any of the above languages. You can even pass the labels in one language and the sequence to
|
86 |
+
classify in another:
|
87 |
+
|
88 |
+
```python
|
89 |
+
# we will classify the Russian translation of, "Who are you voting for in 2020?"
|
90 |
+
sequence_to_classify = "За кого вы голосуете в 2020 году?"
|
91 |
+
# we can specify candidate labels in Russian or any other language above:
|
92 |
+
candidate_labels = ["Europe", "public health", "politics"]
|
93 |
+
classifier(sequence_to_classify, candidate_labels)
|
94 |
+
# {'labels': ['politics', 'Europe', 'public health'],
|
95 |
+
# 'scores': [0.9048484563827515, 0.05722189322113991, 0.03792969882488251],
|
96 |
+
# 'sequence': 'За кого вы голосуете в 2020 году?'}
|
97 |
+
```
|
98 |
+
|
99 |
+
The default hypothesis template is the English, `This text is {}`. If you are working strictly within one language, it
|
100 |
+
may be worthwhile to translate this to the language you are working with:
|
101 |
+
|
102 |
+
```python
|
103 |
+
sequence_to_classify = "¿A quién vas a votar en 2020?"
|
104 |
+
candidate_labels = ["Europa", "salud pública", "política"]
|
105 |
+
hypothesis_template = "Este ejemplo es {}."
|
106 |
+
classifier(sequence_to_classify, candidate_labels, hypothesis_template=hypothesis_template)
|
107 |
+
# {'labels': ['política', 'Europa', 'salud pública'],
|
108 |
+
# 'scores': [0.9109585881233215, 0.05954807624220848, 0.029493311420083046],
|
109 |
+
# 'sequence': '¿A quién vas a votar en 2020?'}
|
110 |
+
```
|
111 |
+
|
112 |
+
#### With manual PyTorch
|
113 |
+
|
114 |
+
```python
|
115 |
+
# pose sequence as a NLI premise and label as a hypothesis
|
116 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
117 |
+
nli_model = AutoModelForSequenceClassification.from_pretrained('joeddav/xlm-roberta-large-xnli')
|
118 |
+
tokenizer = AutoTokenizer.from_pretrained('joeddav/xlm-roberta-large-xnli')
|
119 |
+
|
120 |
+
premise = sequence
|
121 |
+
hypothesis = f'This example is {label}.'
|
122 |
+
|
123 |
+
# run through model pre-trained on MNLI
|
124 |
+
x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
|
125 |
+
truncation_strategy='only_first')
|
126 |
+
logits = nli_model(x.to(device))[0]
|
127 |
+
|
128 |
+
# we throw away "neutral" (dim 1) and take the probability of
|
129 |
+
# "entailment" (2) as the probability of the label being true
|
130 |
+
entail_contradiction_logits = logits[:,[0,2]]
|
131 |
+
probs = entail_contradiction_logits.softmax(dim=1)
|
132 |
+
prob_label_is_true = probs[:,1]
|
133 |
+
```
|
134 |
+
|
135 |
+
## Training
|
136 |
+
|
137 |
+
This model was pre-trained on set of 100 languages, as described in
|
138 |
+
[the original paper](https://arxiv.org/abs/1911.02116). It was then fine-tuned on the task of NLI on the concatenated
|
139 |
+
MNLI train set and the XNLI validation and test sets. Finally, it was trained for one additional epoch on only XNLI
|
140 |
+
data where the translations for the premise and hypothesis are shuffled such that the premise and hypothesis for
|
141 |
+
each example come from the same original English example but the premise and hypothesis are of different languages.
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"XLMRobertaForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"id2label": {
|
13 |
+
"0": "contradiction",
|
14 |
+
"1": "neutral",
|
15 |
+
"2": "entailment"
|
16 |
+
},
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"intermediate_size": 4096,
|
19 |
+
"label2id": {
|
20 |
+
"contradiction": 0,
|
21 |
+
"entailment": 2,
|
22 |
+
"neutral": 1
|
23 |
+
},
|
24 |
+
"layer_norm_eps": 1e-05,
|
25 |
+
"max_position_embeddings": 514,
|
26 |
+
"model_type": "xlm-roberta",
|
27 |
+
"num_attention_heads": 16,
|
28 |
+
"num_hidden_layers": 24,
|
29 |
+
"output_past": true,
|
30 |
+
"pad_token_id": 1,
|
31 |
+
"type_vocab_size": 1,
|
32 |
+
"vocab_size": 250002
|
33 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8869b0c99ad35ec8a8c92434b54383d2dfd7db8cd460e28b9944a407e3a423e4
|
3 |
+
size 2243825580
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:947e0cebe09808e3279f38ceeca58af60c1fcebefbdfa54642285f35a0f8ec57
|
3 |
+
size 2243942751
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": "<mask>"}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:913bd557db7f4e2f85c4d94c4ba30b3342457f6d2d783a8be141ae4018f73325
|
3 |
+
size 2244296816
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_max_length": 512}
|