--- library_name: transformers tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: medical-ner-roberta results: [] --- # medical-ner-roberta This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1293 - Precision: 0.9306 - Recall: 0.9431 - F1: 0.9368 - Accuracy: 0.9792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 90 | 0.6883 | 0.4376 | 0.4556 | 0.4464 | 0.7834 | | No log | 2.0 | 180 | 0.4971 | 0.5779 | 0.6286 | 0.6022 | 0.8343 | | No log | 3.0 | 270 | 0.4184 | 0.5892 | 0.7451 | 0.6581 | 0.8569 | | No log | 4.0 | 360 | 0.3410 | 0.6474 | 0.8062 | 0.7182 | 0.8893 | | No log | 5.0 | 450 | 0.2515 | 0.7554 | 0.8181 | 0.7855 | 0.9270 | | 0.5383 | 6.0 | 540 | 0.2256 | 0.7738 | 0.8577 | 0.8136 | 0.9338 | | 0.5383 | 7.0 | 630 | 0.1782 | 0.8270 | 0.8824 | 0.8538 | 0.9488 | | 0.5383 | 8.0 | 720 | 0.1734 | 0.8271 | 0.8977 | 0.8610 | 0.9554 | | 0.5383 | 9.0 | 810 | 0.1474 | 0.8702 | 0.9123 | 0.8908 | 0.9661 | | 0.5383 | 10.0 | 900 | 0.1476 | 0.8806 | 0.9216 | 0.9006 | 0.9685 | | 0.5383 | 11.0 | 990 | 0.1404 | 0.8913 | 0.9304 | 0.9105 | 0.9722 | | 0.0733 | 12.0 | 1080 | 0.1354 | 0.9085 | 0.9273 | 0.9178 | 0.9741 | | 0.0733 | 13.0 | 1170 | 0.1332 | 0.9112 | 0.9266 | 0.9188 | 0.9739 | | 0.0733 | 14.0 | 1260 | 0.1337 | 0.9072 | 0.9396 | 0.9231 | 0.9755 | | 0.0733 | 15.0 | 1350 | 0.1332 | 0.9283 | 0.9362 | 0.9322 | 0.9776 | | 0.0733 | 16.0 | 1440 | 0.1293 | 0.9321 | 0.9389 | 0.9355 | 0.9783 | | 0.0236 | 17.0 | 1530 | 0.1307 | 0.9253 | 0.9431 | 0.9341 | 0.9786 | | 0.0236 | 18.0 | 1620 | 0.1293 | 0.9278 | 0.9439 | 0.9358 | 0.9788 | | 0.0236 | 19.0 | 1710 | 0.1294 | 0.9306 | 0.9431 | 0.9368 | 0.9792 | | 0.0236 | 20.0 | 1800 | 0.1293 | 0.9306 | 0.9431 | 0.9368 | 0.9792 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3