najwaa commited on
Commit
893a7c5
·
verified ·
1 Parent(s): 4627b0a

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - absa
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ widget:
9
+ - text: battery life is fantastic,:battery life is fantastic, screen is nice and large,
10
+ mouse pad is perfect and the unit is very light.
11
+ - text: no smell, clear photos and clear:good texture, no smell, clear photos and
12
+ clear picture quality.
13
+ - text: quality on the lens are pretty great:the pictures quality on the lens are
14
+ pretty great
15
+ - text: it is not worth your money.:it is not worth your money.
16
+ - text: have all the settings it should.:it doesnt have all the settings it should.
17
+ metrics:
18
+ - accuracy
19
+ pipeline_tag: text-classification
20
+ library_name: setfit
21
+ inference: false
22
+ base_model: sentence-transformers/all-mpnet-base-v2
23
+ ---
24
+
25
+ # SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2
26
+
27
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
28
+
29
+ The model has been trained using an efficient few-shot learning technique that involves:
30
+
31
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
32
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
33
+
34
+ This model was trained within the context of a larger system for ABSA, which looks like so:
35
+
36
+ 1. Use a spaCy model to select possible aspect span candidates.
37
+ 2. Use a SetFit model to filter these possible aspect span candidates.
38
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
39
+
40
+ ## Model Details
41
+
42
+ ### Model Description
43
+ - **Model Type:** SetFit
44
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
45
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
46
+ - **spaCy Model:** en_core_web_sm
47
+ - **SetFitABSA Aspect Model:** [najwaa/absa-digital_cameras-aspect](https://huggingface.co/najwaa/absa-digital_cameras-aspect)
48
+ - **SetFitABSA Polarity Model:** [najwaa/absa-digital_cameras-polarity](https://huggingface.co/najwaa/absa-digital_cameras-polarity)
49
+ - **Maximum Sequence Length:** 384 tokens
50
+ - **Number of Classes:** 2 classes
51
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
58
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
59
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
60
+
61
+ ### Model Labels
62
+ | Label | Examples |
63
+ |:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
64
+ | negative | <ul><li>'like out of focus.:the color was not clear almost like out of focus.'</li><li>'the color was not clear:the color was not clear almost like out of focus.'</li><li>"the zoom was horrible and:the zoom was horrible and didn't focus."</li></ul> |
65
+ | positive | <ul><li>'the setup was easy and she was:the setup was easy and she was taking pictures almost right away.'</li><li>'easy to operate even:easy to operate even for a novice!'</li><li>'it is easy to use and:it is easy to use and super reliable.'</li></ul> |
66
+
67
+ ## Uses
68
+
69
+ ### Direct Use for Inference
70
+
71
+ First install the SetFit library:
72
+
73
+ ```bash
74
+ pip install setfit
75
+ ```
76
+
77
+ Then you can load this model and run inference.
78
+
79
+ ```python
80
+ from setfit import AbsaModel
81
+
82
+ # Download from the 🤗 Hub
83
+ model = AbsaModel.from_pretrained(
84
+ "najwaa/absa-digital_cameras-aspect",
85
+ "najwaa/absa-digital_cameras-polarity",
86
+ )
87
+ # Run inference
88
+ preds = model("The food was great, but the venue is just way too busy.")
89
+ ```
90
+
91
+ <!--
92
+ ### Downstream Use
93
+
94
+ *List how someone could finetune this model on their own dataset.*
95
+ -->
96
+
97
+ <!--
98
+ ### Out-of-Scope Use
99
+
100
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
101
+ -->
102
+
103
+ <!--
104
+ ## Bias, Risks and Limitations
105
+
106
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
107
+ -->
108
+
109
+ <!--
110
+ ### Recommendations
111
+
112
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
113
+ -->
114
+
115
+ ## Training Details
116
+
117
+ ### Training Set Metrics
118
+ | Training set | Min | Median | Max |
119
+ |:-------------|:----|:--------|:----|
120
+ | Word count | 5 | 13.7379 | 31 |
121
+
122
+ | Label | Training Sample Count |
123
+ |:---------|:----------------------|
124
+ | negative | 51 |
125
+ | positive | 52 |
126
+
127
+ ### Training Hyperparameters
128
+ - batch_size: (128, 128)
129
+ - num_epochs: (5, 5)
130
+ - max_steps: -1
131
+ - sampling_strategy: oversampling
132
+ - body_learning_rate: (2e-05, 1e-05)
133
+ - head_learning_rate: 0.01
134
+ - loss: CosineSimilarityLoss
135
+ - distance_metric: cosine_distance
136
+ - margin: 0.25
137
+ - end_to_end: False
138
+ - use_amp: True
139
+ - warmup_proportion: 0.1
140
+ - l2_weight: 0.01
141
+ - seed: 42
142
+ - eval_max_steps: -1
143
+ - load_best_model_at_end: True
144
+
145
+ ### Training Results
146
+ | Epoch | Step | Training Loss | Validation Loss |
147
+ |:------:|:----:|:-------------:|:---------------:|
148
+ | 0.0233 | 1 | 0.2709 | - |
149
+ | 1.1628 | 50 | 0.0951 | 0.0004 |
150
+ | 2.3256 | 100 | 0.0004 | 0.0002 |
151
+ | 3.4884 | 150 | 0.0002 | 0.0001 |
152
+ | 4.6512 | 200 | 0.0002 | 0.0001 |
153
+
154
+ ### Framework Versions
155
+ - Python: 3.11.12
156
+ - SetFit: 1.1.2
157
+ - Sentence Transformers: 4.1.0
158
+ - spaCy: 3.7.5
159
+ - Transformers: 4.51.3
160
+ - PyTorch: 2.6.0+cu124
161
+ - Datasets: 3.6.0
162
+ - Tokenizers: 0.21.1
163
+
164
+ ## Citation
165
+
166
+ ### BibTeX
167
+ ```bibtex
168
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
169
+ doi = {10.48550/ARXIV.2209.11055},
170
+ url = {https://arxiv.org/abs/2209.11055},
171
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
172
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
173
+ title = {Efficient Few-Shot Learning Without Prompts},
174
+ publisher = {arXiv},
175
+ year = {2022},
176
+ copyright = {Creative Commons Attribution 4.0 International}
177
+ }
178
+ ```
179
+
180
+ <!--
181
+ ## Glossary
182
+
183
+ *Clearly define terms in order to be accessible across audiences.*
184
+ -->
185
+
186
+ <!--
187
+ ## Model Card Authors
188
+
189
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
190
+ -->
191
+
192
+ <!--
193
+ ## Model Card Contact
194
+
195
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
196
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.3",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "negative",
4
+ "positive"
5
+ ],
6
+ "span_context": 3,
7
+ "normalize_embeddings": false,
8
+ "spacy_model": "en_core_web_sm"
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbfa426ed433738367083d74c906b34090e3dd2b2e4c47d938b54ccfef687dbb
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50d3e9d719b99e389850490d66757e2c8ec0c1579dd7554ac843bf5754a6be04
3
+ size 7055
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "max_length": 128,
60
+ "model_max_length": 384,
61
+ "pad_to_multiple_of": null,
62
+ "pad_token": "<pad>",
63
+ "pad_token_type_id": 0,
64
+ "padding_side": "right",
65
+ "sep_token": "</s>",
66
+ "stride": 0,
67
+ "strip_accents": null,
68
+ "tokenize_chinese_chars": true,
69
+ "tokenizer_class": "MPNetTokenizer",
70
+ "truncation_side": "right",
71
+ "truncation_strategy": "longest_first",
72
+ "unk_token": "[UNK]"
73
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff