--- tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: picture quality, easy to use.:loads of features, great picture quality, easy to use. - text: very good auto focus, and a:has a timer that keeps its setting for multiple pictures, has very good auto focus, and a large view screen. - text: takes horrible photos and not easy:takes horrible photos and not easy to use. - text: pictures are very clear and precise.:the pictures are very clear and precise. - text: compact and the images are sharp and:it is compact and the images are sharp and clear. metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: false base_model: sentence-transformers/all-mpnet-base-v2 --- # SetFit Polarity Model with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_sm - **SetFitABSA Aspect Model:** [najwaa/absa-digital_cameras-aspect](https://huggingface.co/najwaa/absa-digital_cameras-aspect) - **SetFitABSA Polarity Model:** [najwaa/absa-digital_cameras-polarity](https://huggingface.co/najwaa/absa-digital_cameras-polarity) - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | positive | | | negative | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "najwaa/absa-digital_cameras-aspect", "najwaa/absa-digital_cameras-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 5 | 13.8511 | 31 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 47 | | positive | 47 | ### Training Hyperparameters - batch_size: (128, 128) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0278 | 1 | 0.3158 | - | | 1.3889 | 50 | 0.0839 | 0.0013 | | 2.7778 | 100 | 0.0004 | 0.0006 | | 4.1667 | 150 | 0.0002 | 0.0005 | ### Framework Versions - Python: 3.11.12 - SetFit: 1.1.2 - Sentence Transformers: 4.1.0 - spaCy: 3.7.5 - Transformers: 4.51.3 - PyTorch: 2.6.0+cu124 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```