smnahidhasan commited on
Commit
e5b02b7
·
verified ·
1 Parent(s): 7cdea0e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -10
README.md CHANGED
@@ -2524,15 +2524,7 @@ model-index:
2524
  value: 79.25143598295348
2525
  ---
2526
 
2527
- # hkunlp/instructor-large
2528
- We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks ([MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard))!
2529
- The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)!
2530
-
2531
- **************************** **Updates** ****************************
2532
-
2533
- * 12/28: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-large) trained with hard negatives, which gives better performance.
2534
- * 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-large) and [project page](https://instructor-embedding.github.io/)! Check them out!
2535
-
2536
  ## Quick start
2537
  <hr />
2538
 
@@ -2545,7 +2537,7 @@ pip install InstructorEmbedding
2545
  Then you can use the model like this to calculate domain-specific and task-aware embeddings:
2546
  ```python
2547
  from InstructorEmbedding import INSTRUCTOR
2548
- model = INSTRUCTOR('hkunlp/instructor-large')
2549
  sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
2550
  instruction = "Represent the Science title:"
2551
  embeddings = model.encode([[instruction,sentence]])
 
2524
  value: 79.25143598295348
2525
  ---
2526
 
2527
+ # nascenia/instruct-embedding
 
 
 
 
 
 
 
 
2528
  ## Quick start
2529
  <hr />
2530
 
 
2537
  Then you can use the model like this to calculate domain-specific and task-aware embeddings:
2538
  ```python
2539
  from InstructorEmbedding import INSTRUCTOR
2540
+ model = INSTRUCTOR('nascenia/instruct-embedding')
2541
  sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
2542
  instruction = "Represent the Science title:"
2543
  embeddings = model.encode([[instruction,sentence]])