ppo-LunarLander-v2 / config.json
naveen1divakar's picture
Upload PPO LunarLander-v2 trained agent
f2833c1 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bf7420fdb20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bf7420fdbc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bf7420fdc60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bf7420fdd00>", "_build": "<function ActorCriticPolicy._build at 0x7bf7420fdda0>", "forward": "<function ActorCriticPolicy.forward at 0x7bf7420fde40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bf7420fdee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bf7420fdf80>", "_predict": "<function ActorCriticPolicy._predict at 0x7bf7420fe020>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bf7420fe0c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bf7420fe160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bf7420fe200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bf742065580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1748438693513428285, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAADNP508XB8Iug68gror/T61lHB5uz1MmzkAAIA/AACAP2ZSmbt7gpC6LqEjuInoBbOHIga6zqM9NwAAgD8AAIA/jX7gPXrcNT8PMZ09R5CzvhPUAj2ELwQ9AAAAAAAAAAAzOVa8ww09uhz3ProLMTE1diBpO3KiXDkAAIA/AACAPwD93LxmCJU/+V6ovW62w74hXbK9Hq9WOwAAAAAAAAAAMxOROlz3fbpGIJc7+2MCOBnhgLvQO6a2AACAPwAAgD+Anyw9rj2dusC7LzYEqyMxpspvubvBU7UAAIA/AACAPyBInz7P2Ss/yyxwPVZhq76O0qI+7vPOvQAAAAAAAAAAABSrPNLlhzywulm9Ub1SvpMgKT3iHIO9AAAAAAAAAABm2Bu9bqKRPX3oaL21ghe++E2zvdaagTsAAAAAAAAAAAApFb2Fo5W5gktFs76elC8Bv/25q8e6MwAAgD8AAIA/zdjHPSDrmD4Tf4y9RoxJvp1gU7wSgQQ+AAAAAAAAAABmObu8+vYKPvI/HT0s4ZC+BPiNPU6mT70AAAAAAAAAAIDxJD0KpxK54oZdOkH10DU09n86cr6DuQAAgD8AAIA/ZkZ2u64loLp+PoQ784cZOBc7rzocty64AACAPwAAgD+aBcq8SOeTug5NjDsd6zc47c/TukmUC7gAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEu1nX/YJ3SMAWyUS7WMAXSUR0CQgC4iX6ZZdX2UKGgGR0BkPfsXzlLfaAdN6ANoCEdAkIkX0PH1e3V9lChoBkdAYSRriVB2OmgHTegDaAhHQJCPYI3R5Tt1fZQoaAZHQGUOnAIppexoB03oA2gIR0CQksjHXEqEdX2UKGgGR0BjI9mYjSogaAdN6ANoCEdAkJLZb2USqXV9lChoBkdAZ6T6jWTX8WgHTegDaAhHQJCYVJ2+wkh1fZQoaAZHQGU368xsVL1oB03oA2gIR0CQmlI55qubdX2UKGgGR0BzHPfBN21VaAdNxgFoCEdAkJq4Ny5qd3V9lChoBkdAZ+nT2nKnvWgHTegDaAhHQJCbCdGy5Zt1fZQoaAZHQGIpaAOJ+DxoB03oA2gIR0CQm5BH09QodX2UKGgGR0BhJMDlo11oaAdN6ANoCEdAkK9KCxu89XV9lChoBkdAYh5eD3/PxGgHTegDaAhHQJC4pmSQo1F1fZQoaAZHQGPrITXarWBoB03oA2gIR0CQu7BdUsFudX2UKGgGR0BhpVLeyiVTaAdN6ANoCEdAkL0OV9nbqXV9lChoBkdAZqFLEk0JnmgHTegDaAhHQJC+JBeHBUJ1fZQoaAZHQGD+7ADaGpNoB03oA2gIR0CQvyhWYF7ldX2UKGgGR0BlTsfT1CgLaAdN6ANoCEdAkMPGgJ1JUnV9lChoBkdAVTvC0ngHeWgHS7doCEdAkMpaJZW7v3V9lChoBkdAZSeIRh+fAmgHTegDaAhHQJDSJqi48U51fZQoaAZHQHEQ6oVEd/9oB017A2gIR0CQ1NEn9ehPdX2UKGgGR0Bjel6/qPfbaAdN6ANoCEdAkNfqh11W83V9lChoBkdAZR03VkMCtGgHTegDaAhHQJDaLSw4bS91fZQoaAZHQGW9aDGtITZoB03oA2gIR0CQ3hjHn2ZidX2UKGgGR0Bio2MKkVN6aAdN6ANoCEdAkN/5osZpBXV9lChoBkdAYfHNQCSzPmgHTegDaAhHQJDgXA0sOG11fZQoaAZHQGDxCWeHzpZoB03oA2gIR0CQ4KtRekYXdX2UKGgGR0Bj1r4Fiay9aAdN6ANoCEdAkOFRIatLc3V9lChoBkdAZxnZha1Ti2gHTegDaAhHQJDjSMtK7I11fZQoaAZHQGDrj7IkqtpoB03oA2gIR0CRAB0/GEPEdX2UKGgGR0BoQJzcRDkVaAdN6ANoCEdAkQM+6I3zc3V9lChoBkdAYBMoa1kUbmgHTegDaAhHQJEEm5rgwXZ1fZQoaAZHQGH1FtsN2DBoB03oA2gIR0CRBaF6AvtddX2UKGgGR0BftNFvybx3aAdN6ANoCEdAkQpx5ooNNXV9lChoBkdAZTyy9EkSmWgHTegDaAhHQJEP5UT+NtJ1fZQoaAZHQG2H8ZLqUvBoB000AmgIR0CRECfVqesgdX2UKGgGR0BfvDst03fiaAdN6ANoCEdAkRdrfxc3VHV9lChoBkdAXRLf+CK77WgHTegDaAhHQJEaEEHMUyp1fZQoaAZHQGeSEzwc5sFoB03oA2gIR0CRHZJ1aGHpdX2UKGgGR0BiNZY/3WWhaAdN6ANoCEdAkSAp0Syt3nV9lChoBkdAcU9GucMEzWgHTSoCaAhHQJEjNQAMlTp1fZQoaAZHQGQqRaX8fmtoB03oA2gIR0CRJcXUH6dldX2UKGgGR0BlI1aSs8xLaAdN6ANoCEdAkSic6RyOrHV9lChoBkdAZurWYnfEXWgHTegDaAhHQJEpJwiqyW11fZQoaAZHQGUYMMI/qxFoB03oA2gIR0CRKlDpC8e0dX2UKGgGR0Bh8U9t/FzdaAdN6ANoCEdAkSxI2XLNfXV9lChoBkdAZKBMKTjebmgHTegDaAhHQJFHfPHDJlt1fZQoaAZHQGXtr127nPpoB03oA2gIR0CRSpqsEJSjdX2UKGgGR0BiZsPUaybAaAdN6ANoCEdAkUvxLbpNbnV9lChoBkdAY6MJD3M6imgHTegDaAhHQJFR+m8/Uvx1fZQoaAZHQEYbs5XEIgNoB0v6aAhHQJFVb37DVH51fZQoaAZHQGUpVLSNOudoB03oA2gIR0CRWTbeuV5bdX2UKGgGR0BmslUwSJ0oaAdN6ANoCEdAkVmfP5YYBXV9lChoBkdAcoByZKFqSGgHTYECaAhHQJFeTze40/J1fZQoaAZHQGLhXdsSCe5oB03oA2gIR0CRYKtDD0lJdX2UKGgGR0BnCEXxe9i+aAdN6ANoCEdAkWLgSSNfgXV9lChoBkdAZiND8cdYGWgHTegDaAhHQJFleV6eGwl1fZQoaAZHQGc8g0Kqn3toB03oA2gIR0CRZ3hi9ZiedX2UKGgGR0Bm9eb5M10laAdN6ANoCEdAkWljLW7OFHV9lChoBkdAZcYguh9LH2gHTegDaAhHQJFq6SpzcRF1fZQoaAZHQGai74Ju2qloB03oA2gIR0CRbIWBz3h5dX2UKGgGR0Bl352fTTfBaAdN6ANoCEdAkWzXyiEg4nV9lChoBkdAZL2kNWluWWgHTegDaAhHQJFvbsUqQRx1fZQoaAZHQHH5/Z/Tb35oB01WAmgIR0CRhlgAp8WsdX2UKGgGR0BoctvQ4S6EaAdN6ANoCEdAkY6WSlnAZnV9lChoBkdAY/+yfL9uP2gHTegDaAhHQJGP67HyVfN1fZQoaAZHQG/ko8ZDRdBoB02cA2gIR0CRkfONYKYzdX2UKGgGR0Blz5rk8zRAaAdN6ANoCEdAkZiGZAprlHV9lChoBkdAb41LbpNbkmgHTccCaAhHQJGZ7uQZGax1fZQoaAZHQGcytr9ETg5oB03oA2gIR0CRm4hwl0HRdX2UKGgGR0Bi+/7rLQokaAdN6ANoCEdAkaCx6OYIB3V9lChoBkdAZGa57PY4AGgHTegDaAhHQJGjmp6yB091fZQoaAZHQGZ0fYraufVoB03oA2gIR0CRpkjxkNF0dX2UKGgGR0BjUU2kzoECaAdN6ANoCEdAkawwlruYyHV9lChoBkdAY3UONHYpUmgHTegDaAhHQJGuw2wV0tB1fZQoaAZHQGbVy1uzhP1oB03oA2gIR0CRsLVsUIszdX2UKGgGR0BijwLofSx8aAdN6ANoCEdAkbLK7dznzXV9lChoBkdAZ8rUedTYNGgHTegDaAhHQJGzLykKu0V1fZQoaAZHQGHXrr5ZbINoB03oA2gIR0CRtzmseXAudX2UKGgGR0Biewiu+yquaAdN6ANoCEdAkc+aNAC4jXV9lChoBkdAb+FwQ176YWgHTTICaAhHQJHSWn5zo2Z1fZQoaAZHQG+oYlIEr5JoB03FA2gIR0CR1WGe+VTrdX2UKGgGR0Bmi1Frl/6PaAdN6ANoCEdAkdhxnanJk3V9lChoBkdAZFxFBIFvAGgHTegDaAhHQJHaeEWZZ0V1fZQoaAZHQFERZXdTHbRoB0u7aAhHQJHeg5yU9p11fZQoaAZHQGP4G+j/MntoB03oA2gIR0CR4HZgXuVpdX2UKGgGR0BlkeZ1FH8TaAdN6ANoCEdAkeG6+SKWLXV9lChoBkdAZAZmmtQsPWgHTegDaAhHQJHjLf2saKl1fZQoaAZHQHBWDn7pFCtoB014A2gIR0CR5/3lCCz1dX2UKGgGR0BuQbZamoBJaAdNQQNoCEdAketACCBf8nV9lChoBkdAZULMTN+so2gHTegDaAhHQJHr4AeaKDV1fZQoaAZHQHKmc2zfJmxoB02XAmgIR0CR8c7XQMQVdX2UKGgGR0Bu+uYplSTAaAdN8QFoCEdAkfIcVk+X7nV9lChoBkdAZamGC7K7qmgHTegDaAhHQJH2SUVzp5h1fZQoaAZHQGNWF6zE74loB03oA2gIR0CR+CzwtrbhdX2UKGgGR0BxSHncL0BfaAdNlgFoCEdAkfkoXwb2lHV9lChoBkdAZM63HaN+9mgHTegDaAhHQJH6FpcophF1fZQoaAZHQGRcj8k2P1doB03oA2gIR0CR+nIuoP07dX2UKGgGR0BqY+E4//vOaAdN6ANoCEdAkf1FfiPyTnV9lChoBkdAcwTzI3irDWgHTY8BaAhHQJH+66PKdQR1fZQoaAZHQEdQ7yxzJZJoB0vkaAhHQJIA01R+BpZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}