|
""" |
|
Inference main class. |
|
|
|
Author: Marcely Zanon Boito, 2024 |
|
""" |
|
|
|
from .CTC_model import mHubertForCTC |
|
|
|
import torch |
|
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor |
|
from transformers import HubertConfig |
|
|
|
from datasets import load_dataset |
|
|
|
fbk_test_id = 'FBK-MT/Speech-MASSIVE-test' |
|
mhubert_id = 'utter-project/mHuBERT-147' |
|
|
|
def load_asr_model(): |
|
|
|
tokenizer = Wav2Vec2CTCTokenizer('vocab.json', unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|") |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(mhubert_id) |
|
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) |
|
|
|
config = HubertConfig.from_pretrained('config.json') |
|
model = mHubertForCTC.from_pretrained("naver/mHuBERT-147-ASR-fr", config=config) |
|
model.eval() |
|
return model, processor |
|
|
|
def run_asr_inference(model, processor, example): |
|
audio = processor(example["array"], sampling_rate=example["sampling_rate"]).input_values[0] |
|
input_values = torch.tensor(audio).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
|
|
prediction = processor.batch_decode(pred_ids)[0].replace('[CTC]', "") |
|
return prediction |
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
dataset = load_dataset(fbk_test_id, 'fr-FR', streaming=True) |
|
dataset = dataset['test'] |
|
generator = iter(dataset) |
|
|
|
|
|
model, processor = load_asr_model() |
|
print(model) |
|
|
|
|
|
num_examples= 10 |
|
while num_examples >= 0: |
|
example = next(generator) |
|
|
|
prediction = run_inference(model, processor, example['audio']) |
|
|
|
gold_standard = example['utt'] |
|
|
|
print("Gold standard:", gold_standard) |
|
print("Prediction:", prediction) |
|
print() |
|
num_examples-=1 |
|
|
|
|
|
|
|
|
|
|
|
|