|
import torch |
|
from model import SmoothDiffusionUNet |
|
from noise_scheduler import FrequencyAwareNoise |
|
from config import Config |
|
from torchvision.utils import save_image, make_grid |
|
import numpy as np |
|
|
|
def deterministic_sample(model, noise_scheduler, device, n_samples=4): |
|
"""Deterministic sampling - just do a few big denoising steps""" |
|
config = Config() |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
|
|
x = torch.randn(n_samples, 3, config.image_size, config.image_size, device=device) * 0.5 |
|
|
|
print(f"Starting simplified sampling for {n_samples} samples...") |
|
|
|
|
|
timesteps = [400, 300, 200, 150, 100, 70, 50, 30, 20, 10, 5, 1] |
|
|
|
for i, t_val in enumerate(timesteps): |
|
print(f"Step {i+1}/{len(timesteps)}, t={t_val}") |
|
|
|
t_tensor = torch.full((n_samples,), t_val, device=device, dtype=torch.long) |
|
|
|
|
|
predicted_noise = model(x, t_tensor) |
|
|
|
|
|
alpha_bar_t = noise_scheduler.alpha_bars[t_val].item() |
|
|
|
|
|
pred_x0 = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) |
|
pred_x0 = torch.clamp(pred_x0, -1, 1) |
|
|
|
|
|
if i < len(timesteps) - 1: |
|
|
|
next_t = timesteps[i + 1] |
|
alpha_bar_next = noise_scheduler.alpha_bars[next_t].item() |
|
|
|
|
|
noise_scale = np.sqrt(1 - alpha_bar_next) |
|
noise = torch.randn_like(x) * 0.1 |
|
|
|
x = np.sqrt(alpha_bar_next) * pred_x0 + noise_scale * noise |
|
else: |
|
|
|
x = pred_x0 |
|
|
|
x = torch.clamp(x, -1.5, 1.5) |
|
|
|
if i % 3 == 0: |
|
print(f" Current range: [{x.min():.3f}, {x.max():.3f}], std: {x.std():.3f}") |
|
|
|
|
|
x = torch.clamp(x, -1, 1) |
|
|
|
print(f"Final samples:") |
|
print(f" Range: [{x.min():.3f}, {x.max():.3f}]") |
|
print(f" Mean: {x.mean():.3f}, Std: {x.std():.3f}") |
|
|
|
|
|
x_display = torch.clamp((x + 1) / 2, 0, 1) |
|
|
|
|
|
grid = make_grid(x_display, nrow=2, normalize=False, pad_value=1.0) |
|
save_image(grid, "simplified_samples.png") |
|
print(f"Samples saved to simplified_samples.png") |
|
|
|
return x, grid |
|
|
|
def progressive_sample(model, noise_scheduler, device, n_samples=4): |
|
"""Progressive denoising - start from less noise""" |
|
config = Config() |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
|
|
x = torch.randn(n_samples, 3, config.image_size, config.image_size, device=device) * 0.3 |
|
|
|
print(f"Starting progressive denoising for {n_samples} samples...") |
|
|
|
|
|
start_t = 200 |
|
|
|
for step, t in enumerate(reversed(range(0, start_t))): |
|
if step % 50 == 0: |
|
print(f"Denoising step {step}/{start_t}, t={t}") |
|
|
|
t_tensor = torch.full((n_samples,), t, device=device, dtype=torch.long) |
|
|
|
|
|
predicted_noise = model(x, t_tensor) |
|
|
|
|
|
alpha_t = noise_scheduler.alphas[t].item() |
|
alpha_bar_t = noise_scheduler.alpha_bars[t].item() |
|
beta_t = noise_scheduler.betas[t].item() |
|
|
|
if t > 0: |
|
alpha_bar_prev = noise_scheduler.alpha_bars[t-1].item() |
|
|
|
|
|
pred_x0 = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) |
|
pred_x0 = torch.clamp(pred_x0, -1, 1) |
|
|
|
|
|
coeff1 = np.sqrt(alpha_t) * (1 - alpha_bar_prev) / (1 - alpha_bar_t) |
|
coeff2 = np.sqrt(alpha_bar_prev) * beta_t / (1 - alpha_bar_t) |
|
mean = coeff1 * x + coeff2 * pred_x0 |
|
|
|
|
|
if t > 1: |
|
posterior_variance = beta_t * (1 - alpha_bar_prev) / (1 - alpha_bar_t) |
|
noise = torch.randn_like(x) |
|
|
|
x = mean + np.sqrt(posterior_variance) * noise * 0.5 |
|
else: |
|
x = mean |
|
else: |
|
x = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) |
|
|
|
|
|
x = torch.clamp(x, -1.2, 1.2) |
|
|
|
x = torch.clamp(x, -1, 1) |
|
|
|
print(f"Progressive samples:") |
|
print(f" Range: [{x.min():.3f}, {x.max():.3f}]") |
|
print(f" Mean: {x.mean():.3f}, Std: {x.std():.3f}") |
|
|
|
x_display = torch.clamp((x + 1) / 2, 0, 1) |
|
grid = make_grid(x_display, nrow=2, normalize=False, pad_value=1.0) |
|
save_image(grid, "progressive_samples.png") |
|
print(f"Samples saved to progressive_samples.png") |
|
|
|
return x, grid |
|
|
|
def main(): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
checkpoint = torch.load('model_final.pth', map_location=device) |
|
config = Config() |
|
|
|
model = SmoothDiffusionUNet(config).to(device) |
|
noise_scheduler = FrequencyAwareNoise(config) |
|
model.load_state_dict(checkpoint) |
|
|
|
print("=== TRYING DETERMINISTIC SAMPLING ===") |
|
deterministic_sample(model, noise_scheduler, device, n_samples=4) |
|
|
|
print("\n=== TRYING PROGRESSIVE SAMPLING ===") |
|
progressive_sample(model, noise_scheduler, device, n_samples=4) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|