import torch import torchvision from torchvision.utils import save_image import os import numpy as np from scipy.fftpack import dctn, idctn from config import Config def frequency_aware_sample(model, noise_scheduler, device, epoch=None, writer=None, n_samples=4): """OPTIMIZED sampling for frequency-aware trained models""" config = Config() model.eval() with torch.no_grad(): # Start with moderate noise instead of extreme noise # Your model excels at moderate denoising, not extreme noise removal x = torch.randn(n_samples, 3, config.image_size, config.image_size, device=device) * 0.4 print(f"Starting optimized frequency-aware sampling for {n_samples} samples...") print(f"Initial moderate noise range: [{x.min().item():.3f}, {x.max().item():.3f}]") # Use adaptive timestep schedule - fewer steps, bigger jumps # This works better with frequency-aware training total_steps = 100 # Much fewer than 500 timesteps = [] # Create exponential decay schedule for i in range(total_steps): # Start from 300 instead of 499 (skip extreme noise) t = int(300 * (1 - i / total_steps) ** 2) timesteps.append(max(t, 0)) timesteps = sorted(list(set(timesteps)), reverse=True) # Remove duplicates print(f"Using {len(timesteps)} adaptive timesteps: {timesteps[:10]}...{timesteps[-5:]}") for step, t in enumerate(timesteps): if step % 20 == 0: print(f" Step {step}/{len(timesteps)}, t={t}, range: [{x.min().item():.3f}, {x.max().item():.3f}]") t_tensor = torch.full((n_samples,), t, device=device, dtype=torch.long) # Get model prediction predicted_noise = model(x, t_tensor) # Get noise schedule parameters alpha_t = noise_scheduler.alphas[t].item() alpha_bar_t = noise_scheduler.alpha_bars[t].item() beta_t = noise_scheduler.betas[t].item() if step < len(timesteps) - 1: # Not final step next_t = timesteps[step + 1] alpha_bar_prev = noise_scheduler.alpha_bars[next_t].item() # Predict clean image with stability clamping pred_x0 = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) pred_x0 = torch.clamp(pred_x0, -1.2, 1.2) # Prevent extreme values # Compute posterior mean with frequency-aware adjustments coeff1 = np.sqrt(alpha_t) * (1 - alpha_bar_prev) / (1 - alpha_bar_t) coeff2 = np.sqrt(alpha_bar_prev) * beta_t / (1 - alpha_bar_t) posterior_mean = coeff1 * x + coeff2 * pred_x0 # Add controlled noise - much less than standard DDPM if next_t > 0: posterior_variance = beta_t * (1 - alpha_bar_prev) / (1 - alpha_bar_t) noise = torch.randn_like(x) # Reduce noise for stability - key for frequency-aware models noise_scale = np.sqrt(posterior_variance) * 0.3 # 70% less noise x = posterior_mean + noise_scale * noise else: x = posterior_mean else: # Final step - direct prediction x = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) # Gentle clamping to prevent drift (key for long sampling chains) x = torch.clamp(x, -1.3, 1.3) # Final processing x = torch.clamp(x, -1, 1) print(f"Final samples statistics:") print(f" Range: [{x.min().item():.3f}, {x.max().item():.3f}]") print(f" Mean: {x.mean().item():.3f}, Std: {x.std().item():.3f}") # Quality checks unique_vals = len(torch.unique(torch.round(x * 100) / 100)) print(f" Unique values (x100): {unique_vals}") if unique_vals < 20: print(" ⚠️ Low diversity - might be collapsed") elif x.std().item() < 0.05: print(" ⚠️ Very low variance - uniform output") elif x.std().item() > 0.9: print(" ⚠️ High variance - might still be noisy") else: print(" ✅ Good sample diversity and range!") # Convert to display format x_display = torch.clamp((x + 1.0) / 2.0, 0, 1) # Create grid with proper formatting grid = torchvision.utils.make_grid(x_display, nrow=2, normalize=False, pad_value=1.0) # Save with epoch info if writer and epoch is not None: writer.add_image('Samples', grid, epoch) if epoch is not None: os.makedirs("samples", exist_ok=True) save_image(grid, f"samples/epoch_{epoch}.png") return x, grid # Alternative sampling method specifically for frequency-aware models def progressive_frequency_sample(model, noise_scheduler, device, epoch=None, writer=None, n_samples=4): """Progressive sampling - fewer steps, more stable for frequency-aware models""" config = Config() model.eval() with torch.no_grad(): # Start from moderate noise instead of maximum x = torch.randn(n_samples, 3, config.image_size, config.image_size, device=device) * 0.4 print(f"Starting progressive frequency sampling for {n_samples} samples...") # Use fewer, larger steps - better for frequency-aware training timesteps = [300, 250, 200, 150, 120, 90, 70, 50, 35, 25, 15, 8, 3, 1] for i, t_val in enumerate(timesteps): print(f"Step {i+1}/{len(timesteps)}, t={t_val}") t_tensor = torch.full((n_samples,), t_val, device=device, dtype=torch.long) # Get model prediction predicted_noise = model(x, t_tensor) # Get schedule parameters alpha_bar_t = noise_scheduler.alpha_bars[t_val].item() # Predict clean image pred_x0 = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) pred_x0 = torch.clamp(pred_x0, -1, 1) # Move towards clean prediction if i < len(timesteps) - 1: next_t = timesteps[i + 1] alpha_bar_next = noise_scheduler.alpha_bars[next_t].item() # Blend current image with clean prediction blend_factor = 0.3 # How much to trust the clean prediction x = (1 - blend_factor) * x + blend_factor * pred_x0 # Add controlled noise for next step noise_scale = np.sqrt(1 - alpha_bar_next) * 0.2 # Reduced noise noise = torch.randn_like(x) x = np.sqrt(alpha_bar_next) * x + noise_scale * noise else: # Final step x = pred_x0 # Prevent drift x = torch.clamp(x, -1.2, 1.2) # Final cleanup x = torch.clamp(x, -1, 1) print(f"Progressive samples - Range: [{x.min():.3f}, {x.max():.3f}], Mean: {x.mean():.3f}, Std: {x.std():.3f}") # Convert to display range and create grid x_display = torch.clamp((x + 1) / 2, 0, 1) grid = torchvision.utils.make_grid(x_display, nrow=2, normalize=False, pad_value=1.0) if writer and epoch is not None: writer.add_image('Progressive_Samples', grid, epoch) if epoch is not None: os.makedirs("samples", exist_ok=True) save_image(grid, f"samples/progressive_epoch_{epoch}.png") return x, grid def optimized_frequency_sample(model, noise_scheduler, device, epoch=None, writer=None, n_samples=4): """Optimized sampling with adaptive timesteps for frequency-aware models""" config = Config() model.eval() with torch.no_grad(): # Start with moderate noise x = torch.randn(n_samples, 3, config.image_size, config.image_size, device=device) * 0.5 print(f"Starting optimized frequency sampling for {n_samples} samples...") # Adaptive timestep schedule - more steps where model is most effective early_steps = list(range(400, 200, -25)) # Coarse denoising middle_steps = list(range(200, 50, -15)) # Fine denoising final_steps = list(range(50, 0, -5)) # Detail refinement timesteps = early_steps + middle_steps + final_steps for i, t_val in enumerate(timesteps): if i % 10 == 0: print(f"Step {i+1}/{len(timesteps)}, t={t_val}") t_tensor = torch.full((n_samples,), t_val, device=device, dtype=torch.long) # Get model prediction predicted_noise = model(x, t_tensor) # Standard DDPM step with stability improvements alpha_t = noise_scheduler.alphas[t_val].item() alpha_bar_t = noise_scheduler.alpha_bars[t_val].item() beta_t = noise_scheduler.betas[t_val].item() if t_val > 0: # Find next timestep next_idx = min(i + 1, len(timesteps) - 1) if next_idx < len(timesteps): next_t = timesteps[next_idx] if next_idx < len(timesteps) else 0 alpha_bar_prev = noise_scheduler.alpha_bars[next_t].item() if next_t > 0 else 1.0 else: alpha_bar_prev = 1.0 # Predict x0 pred_x0 = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) pred_x0 = torch.clamp(pred_x0, -1, 1) # Compute posterior mean coeff1 = np.sqrt(alpha_t) * (1 - alpha_bar_prev) / (1 - alpha_bar_t) coeff2 = np.sqrt(alpha_bar_prev) * beta_t / (1 - alpha_bar_t) mean = coeff1 * x + coeff2 * pred_x0 # Add noise with adaptive scaling if t_val > 5: posterior_variance = beta_t * (1 - alpha_bar_prev) / (1 - alpha_bar_t) # Reduce noise in later steps for stability noise_scale = 1.0 if t_val > 100 else 0.5 noise = torch.randn_like(x) x = mean + np.sqrt(posterior_variance) * noise * noise_scale else: x = mean else: # Final step x = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) # Adaptive clamping - tighter as we get closer to final image clamp_range = 2.0 if t_val > 200 else 1.5 if t_val > 50 else 1.2 x = torch.clamp(x, -clamp_range, clamp_range) # Final clamp to data range x = torch.clamp(x, -1, 1) print(f"Optimized samples - Range: [{x.min():.3f}, {x.max():.3f}], Mean: {x.mean():.3f}, Std: {x.std():.3f}") # Quality check unique_vals = len(torch.unique(torch.round(x * 100) / 100)) if unique_vals > 50: print("✅ Good diversity in generated samples") else: print("⚠️ Low diversity - samples might be collapsed") # Convert to display range and create grid x_display = torch.clamp((x + 1) / 2, 0, 1) grid = torchvision.utils.make_grid(x_display, nrow=2, normalize=False, pad_value=1.0) if writer and epoch is not None: writer.add_image('Optimized_Samples', grid, epoch) if epoch is not None: os.makedirs("samples", exist_ok=True) save_image(grid, f"samples/optimized_epoch_{epoch}.png") return x, grid # Aggressive sampling method leveraging the model's strong denoising ability def aggressive_frequency_sample(model, noise_scheduler, device, epoch=None, writer=None, n_samples=4): """Aggressive sampling - leverages the model's strong denoising ability""" config = Config() model.eval() with torch.no_grad(): # Start with stronger noise since your model handles it well x = torch.randn(n_samples, 3, config.image_size, config.image_size, device=device) * 0.8 print(f"Starting aggressive frequency sampling for {n_samples} samples...") print(f"Initial noise range: [{x.min():.3f}, {x.max():.3f}], std: {x.std():.3f}") # Use your model's sweet spot - it excels at moderate denoising # So do several medium-strength denoising steps timesteps = [350, 280, 220, 170, 130, 100, 75, 55, 40, 28, 18, 10, 5, 2, 1] for i, t_val in enumerate(timesteps): t_tensor = torch.full((n_samples,), t_val, device=device, dtype=torch.long) # Get model prediction predicted_noise = model(x, t_tensor) # Your model predicts noise very accurately, so trust it more alpha_bar_t = noise_scheduler.alpha_bars[t_val].item() # Predict clean image pred_x0 = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) pred_x0 = torch.clamp(pred_x0, -1, 1) if i < len(timesteps) - 2: # Not final steps # Move aggressively toward clean prediction alpha_bar_next = noise_scheduler.alpha_bars[timesteps[i + 1]].item() if i + 1 < len(timesteps) else 1.0 # Trust the model more (higher blend factor) trust_factor = 0.6 if t_val > 100 else 0.8 x = (1 - trust_factor) * x + trust_factor * pred_x0 # Add fresh noise for next iteration if t_val > 10: noise_strength = np.sqrt(1 - alpha_bar_next) * 0.4 fresh_noise = torch.randn_like(x) x = np.sqrt(alpha_bar_next) * x + noise_strength * fresh_noise elif i == len(timesteps) - 2: # Second to last step # Almost final - very gentle noise x = 0.2 * x + 0.8 * pred_x0 tiny_noise = torch.randn_like(x) * 0.05 x = x + tiny_noise else: # Final step x = pred_x0 # Prevent explosion but allow more range x = torch.clamp(x, -1.5, 1.5) if i % 3 == 0: print(f" Step {i+1}/{len(timesteps)}, t={t_val}, range: [{x.min():.3f}, {x.max():.3f}], std: {x.std():.3f}") # Final clamp to data range x = torch.clamp(x, -1, 1) print(f"Aggressive samples - Range: [{x.min():.3f}, {x.max():.3f}], Mean: {x.mean():.3f}, Std: {x.std():.3f}") # Quality metrics unique_vals = len(torch.unique(torch.round(x * 200) / 200)) # Higher resolution check print(f"Unique values (x200): {unique_vals}") if x.std().item() < 0.05: print("❌ Very low variance - output collapsed") elif x.std().item() < 0.15: print("⚠️ Low variance - output may be too smooth") elif x.std().item() > 0.6: print("⚠️ High variance - output may be noisy") else: print("✅ Good variance - output looks promising") if unique_vals < 20: print("❌ Very low diversity") elif unique_vals < 100: print("⚠️ Moderate diversity") else: print("✅ Good diversity") # Convert to display range and create grid x_display = torch.clamp((x + 1) / 2, 0, 1) grid = torchvision.utils.make_grid(x_display, nrow=2, normalize=False, pad_value=1.0) if writer and epoch is not None: writer.add_image('Aggressive_Samples', grid, epoch) if epoch is not None: os.makedirs("samples", exist_ok=True) save_image(grid, f"samples/aggressive_epoch_{epoch}.png") return x, grid # Keep the old function name for compatibility def sample(model, noise_scheduler, device, epoch=None, writer=None, n_samples=4): return frequency_aware_sample(model, noise_scheduler, device, epoch, writer, n_samples)