--- base_model: BAAI/bge-large-en-v1.5 datasets: - nazhan/qa-lookup-dataset-iter-1 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Get me the first names of employees working in the 'Legal' department. - text: Provide the value of the export tariff paid on shipments to 'Country Z' in 2024. - text: Show me the value of the freight charges for the shipment made on October 10, 2023. - text: Show me the value of the refund issued to 'Customer K' for a defective product. - text: Provide the value of the environmental compliance cost for 2023. inference: true model-index: - name: SetFit with BAAI/bge-large-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: nazhan/qa-lookup-dataset-iter-1 type: nazhan/qa-lookup-dataset-iter-1 split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with BAAI/bge-large-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [nazhan/qa-lookup-dataset-iter-1](https://huggingface.co/datasets/nazhan/qa-lookup-dataset-iter-1) dataset that can be used for Text Classification. This SetFit model uses [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [nazhan/qa-lookup-dataset-iter-1](https://huggingface.co/datasets/nazhan/qa-lookup-dataset-iter-1) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Lookup | | | qa | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("nazhan/bge-large-en-v1.5-brahmaputra-qa-lookup-iter-1-2-epoch") # Run inference preds = model("Provide the value of the environmental compliance cost for 2023.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 8 | 12.8309 | 19 | | Label | Training Sample Count | |:-------|:----------------------| | Lookup | 65 | | qa | 71 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0034 | 1 | 0.1823 | - | | 0.1701 | 50 | 0.0031 | - | | 0.3401 | 100 | 0.0012 | - | | 0.5102 | 150 | 0.0011 | - | | 0.6803 | 200 | 0.0009 | - | | 0.8503 | 250 | 0.0008 | - | | 1.0 | 294 | - | 0.0004 | | 1.0204 | 300 | 0.0008 | - | | 1.1905 | 350 | 0.0008 | - | | 1.3605 | 400 | 0.0007 | - | | 1.5306 | 450 | 0.0006 | - | | 1.7007 | 500 | 0.0006 | - | | 1.8707 | 550 | 0.0006 | - | | **2.0** | **588** | **-** | **0.0003** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.9 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.4.0+cu121 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```