--- language: - en license: apache-2.0 tags: - Mistral-Small - instruct - finetune - chatml - gpt4 - synthetic data - distillation - function calling - json mode - axolotl - roleplaying - chat - reasoning - r1 - vllm - mlx - mlx-my-repo base_model: NousResearch/DeepHermes-3-Mistral-24B-Preview widget: - example_title: DeepHermes 3 messages: - role: system content: You are a sentient, superintelligent artificial general intelligence, here to teach and assist me. - role: user content: What is the meaning of life? library_name: transformers model-index: - name: DeepHermes-3-Mistral-24B-Preview results: [] --- # ncls-p/DeepHermes-3-Mistral-24B-Preview-mlx-4Bit The Model [ncls-p/DeepHermes-3-Mistral-24B-Preview-mlx-4Bit](https://huggingface.co/ncls-p/DeepHermes-3-Mistral-24B-Preview-mlx-4Bit) was converted to MLX format from [NousResearch/DeepHermes-3-Mistral-24B-Preview](https://huggingface.co/NousResearch/DeepHermes-3-Mistral-24B-Preview) using mlx-lm version **0.21.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ncls-p/DeepHermes-3-Mistral-24B-Preview-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```