Upload 5 files
Browse files- .gitignore +7 -0
- EXAMPLE.json +3 -0
- README.md +17 -0
- rag_seo.py +148 -0
- requirements.txt +12 -0
.gitignore
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.pyc
|
| 3 |
+
*.pyo
|
| 4 |
+
*.DS_Store
|
| 5 |
+
.env
|
| 6 |
+
output.jsonl
|
| 7 |
+
*_copycite.md
|
EXAMPLE.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"example_usage": "python rag_seo.py --url https://www.nebulatech.in/answers/ai-seo/key-components-of-ai-seo --entity 'AI SEO' --sector 'b2b' --out nebula_ai_seo.jsonl"
|
| 3 |
+
}
|
README.md
CHANGED
|
@@ -1,3 +1,20 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
tags:
|
| 3 |
+
- rag
|
| 4 |
+
- ai-seo
|
| 5 |
+
- retrieval
|
| 6 |
+
- llm
|
| 7 |
+
- seo
|
| 8 |
license: apache-2.0
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
# NebulaTech RAG-Helper
|
| 12 |
+
|
| 13 |
+
Reference pipeline that turned **74 long-tail Answer Hub pages** into Bing / Perplexity citations.
|
| 14 |
+
Focus: AI-SEO discoverability using schema markup, fact-dense writing, and 300-token retrieval chunks.
|
| 15 |
+
|
| 16 |
+
## Quick start
|
| 17 |
+
|
| 18 |
+
```bash
|
| 19 |
+
pip install -r requirements.txt
|
| 20 |
+
python rag_seo.py --url https://example.com/article
|
rag_seo.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
RAG-Helper: minimal, reproducible toy script for AI-SEO retrieval demos.
|
| 4 |
+
- Fetches a URL
|
| 5 |
+
- Extracts text
|
| 6 |
+
- Chunks ~300 "tokens" (word approximation)
|
| 7 |
+
- Creates embeddings (sentence-transformers)
|
| 8 |
+
- (Optional) Upserts into Qdrant
|
| 9 |
+
- Generates a short "copy-cite" answer block with footnotes
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import argparse, re, uuid, json, os
|
| 13 |
+
from typing import List, Dict
|
| 14 |
+
import requests
|
| 15 |
+
from bs4 import BeautifulSoup
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
import numpy as np
|
| 18 |
+
|
| 19 |
+
try:
|
| 20 |
+
from sentence_transformers import SentenceTransformer
|
| 21 |
+
except Exception:
|
| 22 |
+
raise SystemExit("Please install requirements: pip install -r requirements.txt")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def fetch_url(url: str) -> str:
|
| 26 |
+
r = requests.get(url, timeout=30)
|
| 27 |
+
r.raise_for_status()
|
| 28 |
+
return r.text
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def html_to_text(html: str) -> str:
|
| 32 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 33 |
+
for tag in soup(["script", "style", "noscript"]):
|
| 34 |
+
tag.decompose()
|
| 35 |
+
text = soup.get_text(separator=" ")
|
| 36 |
+
return re.sub(r"\s+", " ", text).strip()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def chunk_text(text: str, target_tokens: int = 300) -> List[str]:
|
| 40 |
+
words = text.split()
|
| 41 |
+
chunks = []
|
| 42 |
+
for i in range(0, len(words), target_tokens):
|
| 43 |
+
chunk = " ".join(words[i:i+target_tokens])
|
| 44 |
+
if chunk:
|
| 45 |
+
chunks.append(chunk)
|
| 46 |
+
return chunks
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def embed_chunks(chunks: List[str], model_name: str = "sentence-transformers/all-MiniLM-L6-v2") -> np.ndarray:
|
| 50 |
+
model = SentenceTransformer(model_name)
|
| 51 |
+
return model.encode(chunks, batch_size=32, show_progress_bar=True,
|
| 52 |
+
convert_to_numpy=True, normalize_embeddings=True)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def build_payload(chunks: List[str], embs: np.ndarray, source_url: str, entity: str = "", sector: str = "") -> List[Dict]:
|
| 56 |
+
vectors = []
|
| 57 |
+
for idx, (c, v) in enumerate(zip(chunks, embs)):
|
| 58 |
+
vectors.append({
|
| 59 |
+
"id": str(uuid.uuid4()),
|
| 60 |
+
"text": c,
|
| 61 |
+
"vector": v.tolist(),
|
| 62 |
+
"metadata": {
|
| 63 |
+
"source": source_url,
|
| 64 |
+
"entity": entity,
|
| 65 |
+
"sector": sector,
|
| 66 |
+
"position": idx
|
| 67 |
+
}
|
| 68 |
+
})
|
| 69 |
+
return vectors
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def optional_qdrant_upsert(vectors: List[Dict], collection: str, qdrant_url: str = None, api_key: str = None):
|
| 73 |
+
try:
|
| 74 |
+
from qdrant_client import QdrantClient
|
| 75 |
+
from qdrant_client.models import PointStruct, Distance, VectorParams
|
| 76 |
+
except Exception:
|
| 77 |
+
print("qdrant-client not installed; skipping vector DB upsert.")
|
| 78 |
+
return
|
| 79 |
+
|
| 80 |
+
client = QdrantClient(url=qdrant_url or "http://localhost:6333", api_key=api_key)
|
| 81 |
+
dim = len(vectors[0]["vector"])
|
| 82 |
+
|
| 83 |
+
try:
|
| 84 |
+
client.get_collection(collection)
|
| 85 |
+
except Exception:
|
| 86 |
+
client.recreate_collection(
|
| 87 |
+
collection_name=collection,
|
| 88 |
+
vectors_config=VectorParams(size=dim, distance=Distance.COSINE),
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
points = [PointStruct(id=v["id"], vector=v["vector"], payload=v["metadata"] | {"text": v["text"]}) for v in vectors]
|
| 92 |
+
client.upsert(collection_name=collection, points=points)
|
| 93 |
+
print(f"Upserted {len(points)} vectors into Qdrant collection '{collection}'.")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def make_copy_cite(vectors: List[Dict], k: int = 3) -> str:
|
| 97 |
+
top = vectors[:k]
|
| 98 |
+
bullets = []
|
| 99 |
+
for i, v in enumerate(top, start=1):
|
| 100 |
+
snippet = v["text"][:280] + ("..." if len(v["text"]) > 280 else "")
|
| 101 |
+
bullets.append(f"- {snippet} [{i}]")
|
| 102 |
+
footnotes = "\n".join([f"[{i}] {v['metadata']['source']}" for i, v in enumerate(top, start=1)])
|
| 103 |
+
return f"**Answer (draft):**\n" + "\n".join(bullets) + "\n\n" + footnotes
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def main():
|
| 107 |
+
ap = argparse.ArgumentParser(description="NebulaTech RAG-Helper (toy)")
|
| 108 |
+
ap.add_argument("--url", required=True, help="Public URL to ingest")
|
| 109 |
+
ap.add_argument("--entity", default="", help="Primary entity (brand/product/topic)")
|
| 110 |
+
ap.add_argument("--sector", default="", help="Sector tag (e.g., architecture, pharma)")
|
| 111 |
+
ap.add_argument("--qdrant-url", default=None, help="Qdrant endpoint (optional)")
|
| 112 |
+
ap.add_argument("--qdrant-key", default=None, help="Qdrant API key (optional)")
|
| 113 |
+
ap.add_argument("--collection", default="nebula_rag_helper", help="Qdrant collection name")
|
| 114 |
+
ap.add_argument("--out", default="output.jsonl", help="Local JSONL output")
|
| 115 |
+
args = ap.parse_args()
|
| 116 |
+
|
| 117 |
+
print(f"[1/5] Fetching: {args.url}")
|
| 118 |
+
html = fetch_url(args.url)
|
| 119 |
+
text = html_to_text(html)
|
| 120 |
+
|
| 121 |
+
print("[2/5] Chunking ~300 tokens...")
|
| 122 |
+
chunks = chunk_text(text)
|
| 123 |
+
if not chunks:
|
| 124 |
+
raise SystemExit("No text extracted; aborting.")
|
| 125 |
+
|
| 126 |
+
print(f"[3/5] Embedding {len(chunks)} chunks...")
|
| 127 |
+
embs = embed_chunks(chunks)
|
| 128 |
+
|
| 129 |
+
print("[4/5] Building vectors + metadata...")
|
| 130 |
+
vectors = build_payload(chunks, embs, source_url=args.url, entity=args.entity, sector=args.sector)
|
| 131 |
+
|
| 132 |
+
if args.qdrant_url:
|
| 133 |
+
optional_qdrant_upsert(vectors, collection=args.collection, qdrant_url=args.qdrant_url, api_key=args.qdrant_key)
|
| 134 |
+
|
| 135 |
+
with open(args.out, "w", encoding="utf-8") as f:
|
| 136 |
+
for v in vectors:
|
| 137 |
+
f.write(json.dumps(v, ensure_ascii=False) + "\n")
|
| 138 |
+
print(f"Wrote {len(vectors)} vectors to {args.out}")
|
| 139 |
+
|
| 140 |
+
copy_cite = make_copy_cite(vectors, k=3)
|
| 141 |
+
cc_path = os.path.splitext(args.out)[0] + "_copycite.md"
|
| 142 |
+
with open(cc_path, "w", encoding="utf-8") as f:
|
| 143 |
+
f.write(copy_cite)
|
| 144 |
+
print(f"Generated copy-cite block at {cc_path}")
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
|
| 4 |
+
### 2. `requirements.txt`
|
| 5 |
+
```txt
|
| 6 |
+
# Minimal, widely available packages
|
| 7 |
+
sentence-transformers==2.6.1
|
| 8 |
+
qdrant-client==1.9.1
|
| 9 |
+
requests>=2.31.0
|
| 10 |
+
beautifulsoup4>=4.12.3
|
| 11 |
+
tqdm>=4.66.4
|
| 12 |
+
numpy>=1.26.0
|