# microsoft/phi-4 Quantized Models ## Overview This model applies GPTQ quantization to [microsoft/phi-4](https://huggingface.co/microsoft/phi-4) as the base model. It optimizes performance in Japanese environments by using Japanese text as calibration data. - **Model Variants**: - [nejumi/phi-4-GPTQ-Int4-calib-ja-1k](https://huggingface.co/nejumi/phi-4-GPTQ-Int4-calib-ja-1k) - [nejumi/phi-4-GPTQ-Int8-calib-ja-1k](https://huggingface.co/nejumi/phi-4-GPTQ-Int8-calib-ja-1k) - **Base Model**: [microsoft/phi-4](https://huggingface.co/microsoft/phi-4) - **Model Size**: 14,659,507,200 parameters - **Category**: 10B≤ <30B --- ### Quantization Parameters 🐝[Link to W&B](https://wandb.ai/wandb-japan/GPTQ_experiments2/runs/r5axhf09) - bits: 4 or 8 - group_size: 128 - perc_damp: 0.01 - desc_act: True - use_exllama: False - model_seqlen: 2048 --- ## Performance Evaluation Evaluation results from [Nejumi LLM Leaderboard 3 (W&B)](https://wandb.ai/wandb-japan/llm-leaderboard3/reports/Nejumi-LLM-3---Vmlldzo4NTI1NTUx) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64bcb332b7375f6b8456d937/BLMB8XfItDJArvkuROCay.png) Blue: Original Orange: 8bit Green: 4bit ### Benchmark Overall Results | Model | GLP Average | ALT Average | Overall Average | |--------|---------|---------|----------| | phi-4 Int4 | 0.5815 | 0.6953 | 0.6384 | | phi-4 Int8 | 0.5948 | 0.7015 | 0.6482 | | phi-4 Original | 0.5950 | 0.7005 | 0.6477 | ### General Language Performance (GLP) Details | Subcategory | Int4 | Int8 | Original | |-------------|------|------|------| | Expression | 0.8567 | 0.8717 | 0.8583 | | Translation | 0.8458 | 0.8480 | 0.8457 | | Information Retrieval | 0.8780 | 0.8806 | 0.8809 | | Reasoning | 0.6400 | 0.5850 | 0.6550 | | Mathematical Reasoning | 0.5400 | 0.5967 | 0.5817 | | Extraction | 0.3304 | 0.3408 | 0.3470 | | Knowledge & QA | 0.5587 | 0.5735 | 0.5685 | | MMLU_en | 0.3035 | 0.2351 | 0.2158 | | Semantic Analysis | 0.4220 | 0.5200 | 0.5070 | | Syntax Analysis | 0.4399 | 0.4967 | 0.4903 | Note: The low MMLU_en scores are due to the model's inability to strictly follow the required answer format for this benchmark, rather than reflecting its actual knowledge or reasoning capabilities. ### Alignment (ALT) Details | Subcategory | Int4 | Int8 | Original | |-------------|------|------|------| | Controllability | 0.6908 | 0.6949 | 0.6938 | | Ethics & Morality | 0.8800 | 0.9100 | 0.9000 | | Toxicity | 0.8143 | 0.8121 | 0.8007 | | Bias | 0.8858 | 0.8730 | 0.8650 | | Robustness | 0.3717 | 0.4208 | 0.4226 | | Truthfulness | 0.5292 | 0.4983 | 0.5206 | ### Benchmark Scores | Benchmark | Int4 | Int8 | Original | |-------------|------|------|------| | JASTER (0-shot) | 0.3880 | 0.4262 | 0.4186 | | JASTER (2-shot) | 0.6136 | 0.6441 | 0.6398 | | MT-Bench | 8.2438 | 8.2000 | 8.1313 | | LCTG | 0.6860 | 0.6670 | 0.6750 | --- ## Model Characteristics & Evaluation - **High Stability**: Standard GPTQ quantization achieves sufficient performance for 14B class models - **Basic Tasks**: Maintains high performance of 0.84+ in expression, translation, and information retrieval; MT-Bench scores largely maintain the original model's very high level for this model size - **Alignment**: Particularly high scores in ethics, morality, and bias metrics --- ## License This model follows the license of its base model [microsoft/phi-4](https://huggingface.co/microsoft/phi-4). Please refer to the base model's license for details.