Upload tokenizer
Browse files- special_tokens_map.json +1 -1
- tokenizer.py +450 -0
- tokenizer_config.json +53 -3
- vocab.txt +0 -1
special_tokens_map.json
CHANGED
|
@@ -3,5 +3,5 @@
|
|
| 3 |
"mask_token": "[MASK]",
|
| 4 |
"pad_token": "[PAD]",
|
| 5 |
"sep_token": "[SEP]",
|
| 6 |
-
"unk_token": "
|
| 7 |
}
|
|
|
|
| 3 |
"mask_token": "[MASK]",
|
| 4 |
"pad_token": "[PAD]",
|
| 5 |
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
}
|
tokenizer.py
ADDED
|
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import collections
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
from copy import deepcopy
|
| 5 |
+
from typing import List, Optional, Tuple, Dict, Set
|
| 6 |
+
from transformers import PreTrainedTokenizer
|
| 7 |
+
from transformers.utils import logging
|
| 8 |
+
from itertools import product
|
| 9 |
+
logger = logging.get_logger(__name__)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
#from .config_utils import SeqConfig
|
| 14 |
+
#from .sequtils import generate_kmers, lca_kmer_tokenize_segment
|
| 15 |
+
|
| 16 |
+
# Define the names of the vocabulary files
|
| 17 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
| 18 |
+
|
| 19 |
+
# Define the mapping for pretrained vocabulary files
|
| 20 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
| 21 |
+
"vocab_file": {
|
| 22 |
+
"lca-mini-k6s1": "lca-base-dna6/vocab.txt",
|
| 23 |
+
"lca-mini-k6s2": "lca-base-dna6/vocab.txt",
|
| 24 |
+
"lca-mini-k1s1": "lca-base-dna1/vocab.txt",
|
| 25 |
+
}
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
# Define positional embedding sizes for pretrained models
|
| 29 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
| 30 |
+
"lca-mini-k6s1": 1024,
|
| 31 |
+
"lca-mini-k1s1": 1024,
|
| 32 |
+
"lca-mini-k6s2": 2048,
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# Define initial configuration for pretrained models
|
| 36 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
| 37 |
+
"lca-mini-k6s1": {"do_upper_case": True},
|
| 38 |
+
"lca-mini-k1s1": {"do_upper_case": True},
|
| 39 |
+
"lca-mini-k6s2": {"do_upper_case": True},
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
def generate_kmers(abc: Set[str], k: int) -> List[str]:
|
| 43 |
+
"""
|
| 44 |
+
Generates all possible k-mers from a given alphabet.
|
| 45 |
+
|
| 46 |
+
:param abc: The alphabet.
|
| 47 |
+
:type abc: Set[str]
|
| 48 |
+
:param k: Length of the k-mers.
|
| 49 |
+
:type k: int
|
| 50 |
+
:return: List of all possible k-mers.
|
| 51 |
+
:rtype: List[str]
|
| 52 |
+
"""
|
| 53 |
+
return [''.join(p) for p in product(abc, repeat=k)]
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
# Utility function to load vocabulary from a file
|
| 57 |
+
def load_vocab(vocab_file):
|
| 58 |
+
"""Loads a vocabulary file into a dictionary."""
|
| 59 |
+
vocab = collections.OrderedDict()
|
| 60 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
| 61 |
+
tokens = reader.readlines()
|
| 62 |
+
for index, token in enumerate(tokens):
|
| 63 |
+
vocab[token.rstrip("\n")] = index
|
| 64 |
+
return vocab
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def resolve_vocab_file(vocab_file: Optional[str], kmer) -> str:
|
| 68 |
+
"""
|
| 69 |
+
Resolves the path to the vocabulary file. If not provided, tries to load it
|
| 70 |
+
from the installed prokbert package or download it from the GitHub repository.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
vocab_file (str, optional): Path to the vocabulary file.
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
str: Path to the resolved vocabulary file.
|
| 77 |
+
|
| 78 |
+
Raises:
|
| 79 |
+
FileNotFoundError: If the vocabulary file cannot be resolved.
|
| 80 |
+
"""
|
| 81 |
+
if vocab_file and os.path.exists(vocab_file):
|
| 82 |
+
return vocab_file
|
| 83 |
+
|
| 84 |
+
# Attempt 1: Check if prokbert is installed
|
| 85 |
+
try:
|
| 86 |
+
import prokbert
|
| 87 |
+
package_dir = os.path.dirname(prokbert.__file__)
|
| 88 |
+
vocab_path = os.path.join(package_dir, 'data/prokbert_vocabs/', f'prokbert-base-dna{kmer}', 'vocab.txt')
|
| 89 |
+
|
| 90 |
+
print(vocab_path)
|
| 91 |
+
#vocabfile_path = join(self.current_path, 'data/prokbert_vocabs/', f'prokbert-base-dna{act_kmer}', 'vocab.txt')
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
if os.path.exists(vocab_path):
|
| 95 |
+
logger.info(f"Loaded vocab file from installed prokbert package: {vocab_path}")
|
| 96 |
+
return vocab_path
|
| 97 |
+
except ImportError:
|
| 98 |
+
logger.info("Prokbert package not installed, proceeding to download vocab.txt.")
|
| 99 |
+
|
| 100 |
+
# Attempt 2: Download from GitHub repository
|
| 101 |
+
github_url = "https://raw.githubusercontent.com/username/prokbert/main/vocab.txt"
|
| 102 |
+
temp_vocab_path = os.path.join(os.getcwd(), "vocab.txt")
|
| 103 |
+
try:
|
| 104 |
+
import requests
|
| 105 |
+
|
| 106 |
+
response = requests.get(github_url, timeout=10)
|
| 107 |
+
response.raise_for_status() # Raise an error for HTTP failures
|
| 108 |
+
with open(temp_vocab_path, "w", encoding="utf-8") as f:
|
| 109 |
+
f.write(response.text)
|
| 110 |
+
logger.info(f"Downloaded vocab.txt from GitHub to: {temp_vocab_path}")
|
| 111 |
+
return temp_vocab_path
|
| 112 |
+
except requests.RequestException as e:
|
| 113 |
+
raise FileNotFoundError(
|
| 114 |
+
"Could not find or download vocab.txt. Ensure prokbert is installed or "
|
| 115 |
+
"provide a valid vocab file path. Error: {e}"
|
| 116 |
+
) from e
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class LCATokenizer(PreTrainedTokenizer):
|
| 120 |
+
"""
|
| 121 |
+
Custom tokenizer for LCA (Local Context Aware) tasks.
|
| 122 |
+
Handles specific tokenization processes, including k-mer tokenization with configurable shifts.
|
| 123 |
+
|
| 124 |
+
Attributes:
|
| 125 |
+
vocab_files_names (dict): Mapping of vocabulary file names.
|
| 126 |
+
pretrained_vocab_files_map (dict): Mapping of pretrained vocabulary files.
|
| 127 |
+
pretrained_init_configuration (dict): Initial configuration for pretrained models.
|
| 128 |
+
max_model_input_sizes (dict): Maximum input sizes for pretrained models.
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 132 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
| 133 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
| 134 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
| 135 |
+
|
| 136 |
+
nucleotide_abc = {"A", "T", "C", "G"}
|
| 137 |
+
extended_nucleotide_abc = {"A", "T", "C", "G", "*"}
|
| 138 |
+
sequence_unk_token = 'N'
|
| 139 |
+
|
| 140 |
+
default_unk_token = "[UNK]"
|
| 141 |
+
default_sep_token = "[SEP]"
|
| 142 |
+
default_pad_token = "[PAD]"
|
| 143 |
+
default_cls_token = "[CLS]"
|
| 144 |
+
default_mask_token = "[MASK]"
|
| 145 |
+
|
| 146 |
+
vocab_files_names = {"vocab_file": "vocab.txt"}
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def __init__(
|
| 151 |
+
self,
|
| 152 |
+
vocab_file: Optional[str] = None,
|
| 153 |
+
kmer: int = 6,
|
| 154 |
+
shift: int = 1,
|
| 155 |
+
operation_space: str = "kmer",
|
| 156 |
+
**kwargs,
|
| 157 |
+
):
|
| 158 |
+
"""
|
| 159 |
+
Initializes the LCATokenizer.
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
vocab_file (str): Path to the vocabulary file.
|
| 163 |
+
kmer (int): K-mer size for tokenization.
|
| 164 |
+
shift (int): Shift size for tokenization.
|
| 165 |
+
operation_space (str): Defines operation mode ('kmer' or 'sequence').
|
| 166 |
+
kwargs: Additional arguments for PreTrainedTokenizer.
|
| 167 |
+
"""
|
| 168 |
+
# Load vocabulary directly from the vocab file
|
| 169 |
+
self.config = {}
|
| 170 |
+
resolved_vocab_file = resolve_vocab_file(vocab_file, kmer)
|
| 171 |
+
self.vocab = load_vocab(resolved_vocab_file)
|
| 172 |
+
#self.vocab = load_vocab(vocab_file)
|
| 173 |
+
self.id2token = {v: k for k, v in self.vocab.items()}
|
| 174 |
+
self.kmer = kmer
|
| 175 |
+
self.shift = shift
|
| 176 |
+
self.operation_space = operation_space
|
| 177 |
+
|
| 178 |
+
self.config["kmer"] = kmer
|
| 179 |
+
self.config["shift"] = shift
|
| 180 |
+
self.config["operation_space"] = operation_space
|
| 181 |
+
|
| 182 |
+
# Special tokens
|
| 183 |
+
kwargs.setdefault("cls_token", "[CLS]")
|
| 184 |
+
kwargs.setdefault("sep_token", "[SEP]")
|
| 185 |
+
kwargs.setdefault("pad_token", "[PAD]")
|
| 186 |
+
kwargs.setdefault("unk_token", "[UNK]")
|
| 187 |
+
kwargs.setdefault("mask_token", "[MASK]")
|
| 188 |
+
self.special_tokens = [kwargs["cls_token"], kwargs["sep_token"], kwargs["pad_token"], kwargs["unk_token"], kwargs["mask_token"]]
|
| 189 |
+
super().__init__(**kwargs)
|
| 190 |
+
if self.operation_space == 'sequence':
|
| 191 |
+
token_extension = sorted(list(set(generate_kmers(LCATokenizer.extended_nucleotide_abc, self.config['kmer'])) - \
|
| 192 |
+
set(generate_kmers(LCATokenizer.nucleotide_abc, self.config['kmer'])) ))
|
| 193 |
+
self.extended_vocab = deepcopy(self.vocab)
|
| 194 |
+
for token in token_extension:
|
| 195 |
+
self.extended_vocab[token] = 4
|
| 196 |
+
|
| 197 |
+
self.unk_token = LCATokenizer.sequence_unk_token * self.config['shift']
|
| 198 |
+
self.mask_token = '*'
|
| 199 |
+
self.extended_vocab[self.mask_token] = self.vocab['[MASK]']
|
| 200 |
+
|
| 201 |
+
full_unk = 'N' * self.config['kmer']
|
| 202 |
+
self.vocab[full_unk] = 1
|
| 203 |
+
self.id2token[1] = full_unk
|
| 204 |
+
self.full_unk_token = full_unk
|
| 205 |
+
|
| 206 |
+
else:
|
| 207 |
+
self.extended_vocab = self.vocab
|
| 208 |
+
self.unk_token = '[UNK]'
|
| 209 |
+
|
| 210 |
+
self.unkown_tokenid = self.vocab['[UNK]']
|
| 211 |
+
self.sep_token = '[SEP]'
|
| 212 |
+
self.cls_token = '[CLS]'
|
| 213 |
+
self.pad_token = '[PAD]'
|
| 214 |
+
self.mask_token = '[MASK]'
|
| 215 |
+
self.special_tokens = list(self.special_tokens_map.values())
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def get_vocab(self) -> Dict[str, int]:
|
| 219 |
+
return self.vocab
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def _tokenize(self, text, **kwargs):
|
| 223 |
+
"""
|
| 224 |
+
Tokenizes the input text using LCA tokenization with an optional offset.
|
| 225 |
+
|
| 226 |
+
Args:
|
| 227 |
+
text (str): The input DNA sequence to tokenize.
|
| 228 |
+
kwargs: Additional arguments, including:
|
| 229 |
+
- offset (int): The starting position for tokenization. Default is 0.
|
| 230 |
+
|
| 231 |
+
Returns:
|
| 232 |
+
List[str]: A list of tokens generated from the input text.
|
| 233 |
+
"""
|
| 234 |
+
offset = kwargs.get("offset", 0)
|
| 235 |
+
#if offset < 0 or offset >= self.config.get("shift", 1):
|
| 236 |
+
# raise ValueError(f"Invalid offset: {offset}. Must be between 0 and {self.config['shift'] - 1}.")
|
| 237 |
+
|
| 238 |
+
return self.lca_kmer_tokenize_segment(text, offset)
|
| 239 |
+
|
| 240 |
+
def _convert_token_to_id(self, token: str) -> int:
|
| 241 |
+
"""
|
| 242 |
+
Converts a token to its corresponding ID using the vocabulary.
|
| 243 |
+
|
| 244 |
+
Args:
|
| 245 |
+
token (str): The token to convert.
|
| 246 |
+
|
| 247 |
+
Returns:
|
| 248 |
+
int: Token ID, or the unknown token ID if the token is not in the vocabulary.
|
| 249 |
+
"""
|
| 250 |
+
return self.extended_vocab.get(token, self.unkown_tokenid)
|
| 251 |
+
|
| 252 |
+
def _convert_id_to_token(self, index: int) -> str:
|
| 253 |
+
"""
|
| 254 |
+
Converts an ID to its corresponding token using the vocabulary.
|
| 255 |
+
|
| 256 |
+
Args:
|
| 257 |
+
index (int): The ID to convert.
|
| 258 |
+
|
| 259 |
+
Returns:
|
| 260 |
+
str: Corresponding token, or the unknown token if the ID is not in the vocabulary.
|
| 261 |
+
"""
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
return self.id2token.get(index, self.unk_token)
|
| 265 |
+
|
| 266 |
+
def __len__(self) -> int:
|
| 267 |
+
"""
|
| 268 |
+
Returns the length of the tokenizer's vocabulary.
|
| 269 |
+
|
| 270 |
+
The length returned is one less than the actual number of items in the vocabulary
|
| 271 |
+
to account for a specific offset or adjustment in token indexing.
|
| 272 |
+
|
| 273 |
+
:return: The adjusted length of the vocabulary.
|
| 274 |
+
:rtype: int
|
| 275 |
+
"""
|
| 276 |
+
return len(self.vocab)
|
| 277 |
+
|
| 278 |
+
def lca_kmer_tokenize_segment(self, segment: str, offset: int):
|
| 279 |
+
# calculate the tokenization for one offset value
|
| 280 |
+
shift = self.shift
|
| 281 |
+
kmer = self.kmer
|
| 282 |
+
#max_segment_length = params['max_segment_length']
|
| 283 |
+
#max_unknown_token_proportion = params['max_unknown_token_proportion']
|
| 284 |
+
#kmer = params['kmer']
|
| 285 |
+
#token_limit = params['token_limit']
|
| 286 |
+
#vocabmap = params['vocabmap']
|
| 287 |
+
#add_special_token = params['add_special_token']
|
| 288 |
+
#if len(segment) > max_segment_length:
|
| 289 |
+
# raise(ValueError(f'The segment is longer {len(segment)} then the maximum allowed segment length ({max_segment_length}). '))
|
| 290 |
+
|
| 291 |
+
kmers = [segment[i:i + kmer] for i in range(offset, len(segment) - kmer + 1, shift)]
|
| 292 |
+
|
| 293 |
+
return kmers
|
| 294 |
+
|
| 295 |
+
def tokenize(self, text: str, **kwargs) -> List[str]:
|
| 296 |
+
"""
|
| 297 |
+
Tokenizes the input text using LCA tokenization.
|
| 298 |
+
|
| 299 |
+
Args:
|
| 300 |
+
text (str): The input DNA sequence to tokenize.
|
| 301 |
+
kwargs: Additional arguments, including:
|
| 302 |
+
- offset (int): The starting position for tokenization. Default is 0.
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
List[str]: A list of tokens generated from the input text.
|
| 306 |
+
"""
|
| 307 |
+
return self._tokenize(text, **kwargs)
|
| 308 |
+
|
| 309 |
+
def encode(self, text: str, **kwargs) -> List[int]:
|
| 310 |
+
"""
|
| 311 |
+
Extends the base `encode` method to support an `offset` parameter for custom tokenization logic.
|
| 312 |
+
|
| 313 |
+
Args:
|
| 314 |
+
text (str): Input text (DNA sequence).
|
| 315 |
+
offset (int): Offset parameter for the LCA tokenization. Defaults to 0.
|
| 316 |
+
kwargs: Additional arguments passed to the base `encode` method.
|
| 317 |
+
|
| 318 |
+
Returns:
|
| 319 |
+
List[int]: Encoded token IDs.
|
| 320 |
+
"""
|
| 321 |
+
# Inject the offset into kwargs for the tokenizer
|
| 322 |
+
offset = kwargs.get("offset", 0)
|
| 323 |
+
kwargs["offset"] = offset
|
| 324 |
+
return super().encode(text, **kwargs)
|
| 325 |
+
|
| 326 |
+
def build_inputs_with_special_tokens(
|
| 327 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 328 |
+
) -> List[int]:
|
| 329 |
+
"""
|
| 330 |
+
Builds inputs by adding special tokens to a sequence or pair of sequences.
|
| 331 |
+
|
| 332 |
+
Args:
|
| 333 |
+
token_ids_0 (List[int]): List of token IDs for the first sequence.
|
| 334 |
+
token_ids_1 (List[int], optional): List of token IDs for the second sequence.
|
| 335 |
+
|
| 336 |
+
Returns:
|
| 337 |
+
List[int]: Input IDs with special tokens.
|
| 338 |
+
"""
|
| 339 |
+
if token_ids_1 is None:
|
| 340 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
| 341 |
+
|
| 342 |
+
input_ids = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 + [self.sep_token_id]
|
| 343 |
+
#token_type_ids = [0 for i in range(len(input_ids))]
|
| 344 |
+
return input_ids
|
| 345 |
+
|
| 346 |
+
def create_token_type_ids_from_sequences(
|
| 347 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
| 348 |
+
) -> List[int]:
|
| 349 |
+
"""
|
| 350 |
+
Create the token type IDs corresponding to the sequences passed. [What are token type
|
| 351 |
+
IDs?](../glossary#token-type-ids)
|
| 352 |
+
|
| 353 |
+
Should be overridden in a subclass if the model has a special way of building those.
|
| 354 |
+
|
| 355 |
+
Args:
|
| 356 |
+
token_ids_0 (`List[int]`): The first tokenized sequence.
|
| 357 |
+
token_ids_1 (`List[int]`, *optional*): The second tokenized sequence.
|
| 358 |
+
|
| 359 |
+
Returns:
|
| 360 |
+
`List[int]`: The token type ids.
|
| 361 |
+
"""
|
| 362 |
+
if token_ids_1 is None:
|
| 363 |
+
return (len(token_ids_0)+2) * [0]
|
| 364 |
+
return [0] * len(token_ids_0) + [1] * len(token_ids_1)
|
| 365 |
+
|
| 366 |
+
def batch_encode_plus(self, *args, **kwargs):
|
| 367 |
+
"""
|
| 368 |
+
Extends the base `batch_encode_plus` method to add custom functionality if needed.
|
| 369 |
+
|
| 370 |
+
Args:
|
| 371 |
+
*args: Positional arguments passed to the base method.
|
| 372 |
+
**kwargs: Keyword arguments passed to the base method.
|
| 373 |
+
|
| 374 |
+
Returns:
|
| 375 |
+
dict: A dictionary containing the results of batch encoding.
|
| 376 |
+
"""
|
| 377 |
+
# Call the parent method to handle the batch encoding
|
| 378 |
+
#print('Running batch encoding with ids')
|
| 379 |
+
act_outputs = super().batch_encode_plus(*args, **kwargs)
|
| 380 |
+
return act_outputs
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
| 384 |
+
"""
|
| 385 |
+
Saves the tokenizer's vocabulary to a file.
|
| 386 |
+
|
| 387 |
+
Args:
|
| 388 |
+
save_directory (str): Directory to save the vocabulary file.
|
| 389 |
+
filename_prefix (str, optional): Prefix for the filename. Default is None.
|
| 390 |
+
|
| 391 |
+
Returns:
|
| 392 |
+
Tuple[str]: Path to the saved vocabulary file.
|
| 393 |
+
"""
|
| 394 |
+
if filename_prefix is None:
|
| 395 |
+
filename_prefix = ""
|
| 396 |
+
vocab_file_path = os.path.join(save_directory, filename_prefix + "vocab.txt")
|
| 397 |
+
with open(vocab_file_path, "w") as f:
|
| 398 |
+
for token in self.vocab:
|
| 399 |
+
f.write(token + "\n")
|
| 400 |
+
return (vocab_file_path,)
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
@property
|
| 404 |
+
def vocab_size(self) -> int:
|
| 405 |
+
"""
|
| 406 |
+
Returns the size of the vocabulary (number of tokens in `vocab.txt`).
|
| 407 |
+
|
| 408 |
+
Returns:
|
| 409 |
+
int: The size of the vocabulary.
|
| 410 |
+
"""
|
| 411 |
+
return len(self.vocab)
|
| 412 |
+
|
| 413 |
+
def save_pretrained(self, save_directory: str, **kwargs):
|
| 414 |
+
"""
|
| 415 |
+
Save the tokenizer configuration and vocabulary to a directory.
|
| 416 |
+
|
| 417 |
+
Args:
|
| 418 |
+
save_directory (str): Directory to save the tokenizer files.
|
| 419 |
+
kwargs: Additional arguments for saving.
|
| 420 |
+
"""
|
| 421 |
+
if not os.path.exists(save_directory):
|
| 422 |
+
os.makedirs(save_directory)
|
| 423 |
+
|
| 424 |
+
# Save the base tokenizer configuration
|
| 425 |
+
super().save_pretrained(save_directory, **kwargs)
|
| 426 |
+
|
| 427 |
+
# Path to the tokenizer configuration file
|
| 428 |
+
tokenizer_config_path = os.path.join(save_directory, "tokenizer_config.json")
|
| 429 |
+
|
| 430 |
+
# Load the existing configuration or create a new one
|
| 431 |
+
if os.path.exists(tokenizer_config_path):
|
| 432 |
+
with open(tokenizer_config_path, "r", encoding="utf-8") as f:
|
| 433 |
+
tokenizer_config = json.load(f)
|
| 434 |
+
else:
|
| 435 |
+
tokenizer_config = {}
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
# Add custom fields for AutoTokenizer and remote code
|
| 439 |
+
#tokenizer_config["auto_map"] = {
|
| 440 |
+
# "AutoTokenizer": "src.prokbert.tokenizer.LCATokenizer"
|
| 441 |
+
#}
|
| 442 |
+
#tokenizer_config["repository"] = "https://github.com/nbrg-ppcu/prokbert"
|
| 443 |
+
#tokenizer_config["trust_remote_code"] = True
|
| 444 |
+
tokenizer_config["kmer"] = self.kmer
|
| 445 |
+
tokenizer_config["shift"] = self.shift
|
| 446 |
+
tokenizer_config["operation_space"] = self.operation_space
|
| 447 |
+
# Save the updated configuration
|
| 448 |
+
with open(tokenizer_config_path, "w", encoding="utf-8") as f:
|
| 449 |
+
json.dump(tokenizer_config, f, indent=2)
|
| 450 |
+
|
tokenizer_config.json
CHANGED
|
@@ -1,6 +1,55 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
"cls_token": "[CLS]",
|
|
|
|
| 4 |
"mask_token": "[MASK]",
|
| 5 |
"model_max_length": 1000000000000000019884624838656,
|
| 6 |
"pad_token": "[PAD]",
|
|
@@ -8,5 +57,6 @@
|
|
| 8 |
"tokenizer_class": "LCATokenizer",
|
| 9 |
"unk_token": "[UNK]",
|
| 10 |
"kmer": 6,
|
| 11 |
-
"shift": 1
|
| 12 |
-
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"auto_map": {
|
| 45 |
+
"AutoTokenizer": [
|
| 46 |
+
"tokenizer.LCATokenizer",
|
| 47 |
+
null
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
"clean_up_tokenization_spaces": false,
|
| 51 |
"cls_token": "[CLS]",
|
| 52 |
+
"extra_special_tokens": {},
|
| 53 |
"mask_token": "[MASK]",
|
| 54 |
"model_max_length": 1000000000000000019884624838656,
|
| 55 |
"pad_token": "[PAD]",
|
|
|
|
| 57 |
"tokenizer_class": "LCATokenizer",
|
| 58 |
"unk_token": "[UNK]",
|
| 59 |
"kmer": 6,
|
| 60 |
+
"shift": 1,
|
| 61 |
+
"operation_space": "kmer"
|
| 62 |
+
}
|
vocab.txt
CHANGED
|
@@ -4099,4 +4099,3 @@ TTTTTA
|
|
| 4099 |
TTTTTC
|
| 4100 |
TTTTTG
|
| 4101 |
TTTTTT
|
| 4102 |
-
NNNNNN
|
|
|
|
| 4099 |
TTTTTC
|
| 4100 |
TTTTTG
|
| 4101 |
TTTTTT
|
|
|