pixtral-12b-quantized.w8a8

Model Overview

  • Model Architecture: mgoin/pixtral-12b
    • Input: Vision-Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: INT8
    • Activation quantization: INT8
  • Release Date: 2/24/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of mgoin/pixtral-12b.

Model Optimizations

This model was obtained by quantizing the weights of mgoin/pixtral-12b to INT8 data type, ready for inference with vLLM >= 0.5.2.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams

# prepare model
llm = LLM(
    model="neuralmagic/pixtral-12b-quantized.w8a8",
    trust_remote_code=True,
    max_model_len=4096,
    max_num_seqs=2,
)

# prepare inputs
question = "What is the content of this image?"
inputs = {
    "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
    "multi_modal_data": {
        "image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
    },
}

# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below as part a multimodal announcement blog.

Model Creation Code
import requests
import torch
from PIL import Image
from transformers import AutoProcessor

from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import TraceableLlavaForConditionalGeneration

# Load model.
model_id = mgoin/pixtral-12b
model = TraceableLlavaForConditionalGeneration.from_pretrained(
    model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

# Oneshot arguments
DATASET_ID = "flickr30k"
DATASET_SPLIT = {"calibration": "test[:512]"}
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048


# Define a oneshot data collator for multimodal inputs.
def data_collator(batch):
    assert len(batch) == 1
    return {
        "input_ids": torch.LongTensor(batch[0]["input_ids"]),
        "attention_mask": torch.tensor(batch[0]["attention_mask"]),
        "pixel_values": torch.tensor(batch[0]["pixel_values"]),
    }


# Recipe
recipe = [
    GPTQModifier(
        targets="Linear",
        scheme="W8A8",
        sequential_targets=["MistralDecoderLayer"],
        ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
    ),
]

SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w8a8"

# Perform oneshot
oneshot(
    model=model,
    tokenizer=model_id,
    dataset=DATASET_ID,
    splits=DATASET_SPLIT,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
    trust_remote_code_model=True,
    data_collator=data_collator,
    output_dir=SAVE_DIR
)

Evaluation

The model was evaluated using mistral-evals for vision-related tasks and using lm_evaluation_harness for select text-based benchmarks. The evaluations were conducted using the following commands:

Evaluation Commands

Vision Tasks

  • vqav2
  • docvqa
  • mathvista
  • mmmu
  • chartqa
vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7

python -m eval.run eval_vllm \
        --model_name neuralmagic/pixtral-12b-quantized.w8a8 \
        --url http://0.0.0.0:8000 \
        --output_dir ~/tmp
        --eval_name <vision_task_name>

Text-based Tasks

MMLU

lm_eval \
  --model vllm \
  --model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks mmlu \
  --num_fewshot 5
  --batch_size auto \
  --output_path output_dir \

HumanEval

Generation
python3 codegen/generate.py \
  --model neuralmagic/pixtral-12b-quantized.w8a8 \
  --bs 16 \
  --temperature 0.2 \
  --n_samples 50 \
  --root "." \
  --dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
  humaneval/neuralmagic/pixtral-12b-quantized.w8a8_vllm_temp_0.2
Evaluation
evalplus.evaluate \
  --dataset humaneval \
  --samples humaneval/neuralmagic/pixtral-12b-quantized.w8a8_vllm_temp_0.2-sanitized

Accuracy

Category Metric mgoin/pixtral-12b neuralmagic/pixtral-12b-quantized.w8a8 Recovery (%)
Vision MMMU (val, CoT)
explicit_prompt_relaxed_correctness
48.00 46.22 96.29%
VQAv2 (val)
vqa_match
78.71 78.00 99.10%
DocVQA (val)
anls
89.47 89.35 99.87%
ChartQA (test, CoT)
anywhere_in_answer_relaxed_correctness
81.68 81.60 99.90%
Mathvista (testmini, CoT)
explicit_prompt_relaxed_correctness
56.50 57.30 101.42%
Average Score 70.07 70.09 100.03%
Text HumanEval
pass@1
68.40 66.39 97.06%
MMLU (5-shot) 71.40 70.50 98.74%

Inference Performance

This model achieves up to 1.57x speedup in single-stream deployment and up to 1.53x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with vLLM version 0.7.2, and GuideLLM.

Benchmarking Command ``` guidellm --model neuralmagic/pixtral-12b-quantized.w8a8 --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=,generated_tokens=,images=,width=,height= --max seconds 120 --backend aiohttp_server ```

Single-stream performance (measured with vLLM version 0.7.2)

Document Visual Question Answering
1680W x 2240H
64/128
Visual Reasoning
640W x 480H
128/128
Image Captioning
480W x 360H
0/128
Hardware Model Average Cost Reduction Latency (s) Queries Per Dollar Latency (s) Queries Per Dollar Latency (s) Queries Per Dollar
A6000x1 mgoin/pixtral-12b 5.7 796 4.8 929 4.7 964
neuralmagic/pixtral-12b-quantized.w8a8 1.55 3.7 1220 3.1 1437 3.0 1511
neuralmagic/pixtral-12b-quantized.w4a16 2.16 3.2 1417 2.1 2093 1.9 2371
A100x1 mgoin/pixtral-12b 3.0 676 2.4 825 2.3 859
neuralmagic/pixtral-12b-quantized.w8a8 1.38 2.2 904 1.7 1159 1.7 1201
neuralmagic/pixtral-12b-quantized.w4a16 1.83 1.8 1096 1.3 1557 1.2 1702
H100x1 mgoin/pixtral-12b 1.8 595 1.5 732 1.4 764
neuralmagic/pixtral-12b-FP8-Dynamic 1.35 1.4 767 1.1 1008 1.0 1056
neuralmagic/pixtral-12b-quantized.w4a16 1.37 1.4 787 1.1 1018 1.0 1065

**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens

**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).

Multi-stream asynchronous performance (measured with vLLM version 0.7.2)

Document Visual Question Answering
1680W x 2240H
64/128
Visual Reasoning
640W x 480H
128/128
Image Captioning
480W x 360H
0/128
Hardware Model Average Cost Reduction Maximum throughput (QPS) Queries Per Dollar Maximum throughput (QPS) Queries Per Dollar Maximum throughput (QPS) Queries Per Dollar
A6000x1 mgoin/pixtral-12b 0.6 2632 0.9 4108 1.1 4774
neuralmagic/pixtral-12b-quantized.w8a8 1.50 0.9 3901 1.4 6160 1.6 7292
neuralmagic/pixtral-12b-quantized.w4a16 1.41 0.6 2890 1.3 5758 1.8 8312
A100x1 mgoin/pixtral-12b 1.1 2291 1.8 3670 2.1 4284
neuralmagic/pixtral-12b-quantized.w8a8 1.38 1.5 3096 2.5 5076 3.0 5965
neuralmagic/pixtral-12b-quantized.w4a16 1.40 1.4 2728 2.6 5133 3.5 6943
H100x1 BF16 2.6 2877 4.0 4372 4.7 5095
neuralmagic/pixtral-12b-FP8-Dynamic 1.33 3.4 3753 5.4 5862 6.3 6917
neuralmagic/pixtral-12b-quantized.w4a16 1.22 2.8 3115 5.0 5511 6.2 6777

**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens

**QPS: Queries per second.

**QPD: Queries per dollar, based on on-demand cost at Lambda Labs (observed on 2/18/2025).

Downloads last month
177
Safetensors
Model size
12.7B params
Tensor type
BF16
·
I8
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for neuralmagic/pixtral-12b-quantized.w8a8

Base model

mgoin/pixtral-12b
Quantized
(3)
this model

Collection including neuralmagic/pixtral-12b-quantized.w8a8