ozayezerceli commited on
Commit
e146f25
·
verified ·
1 Parent(s): faa302b

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,744 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - tr
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:482091
10
+ - loss:MatryoshkaLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ - dataset_size:5749
13
+ - loss:CoSENTLoss
14
+ base_model: artiwise-ai/modernbert-base-tr-uncased
15
+ widget:
16
+ - source_sentence: Ya da dışarı çıkıp yürü ya da biraz koşun. Bunu düzenli olarak
17
+ yapmıyorum ama Washington bunu yapmak için harika bir yer.
18
+ sentences:
19
+ - “Washington's yürüyüş ya da koşu için harika bir yer.”
20
+ - H-2A uzaylılar Amerika Birleşik Devletleri'nde zaman kısa süreleri var.
21
+ - “Washington'da düzenli olarak yürüyüşe ya da koşuya çıkıyorum.”
22
+ - source_sentence: Orta yaylalar ve güney kıyıları arasındaki kontrast daha belirgin
23
+ olamazdı.
24
+ sentences:
25
+ - İşitme Yardımı Uyumluluğu Müzakere Kuralları Komitesi, Federal İletişim Komisyonu'nun
26
+ bir ürünüdür.
27
+ - Dağlık ve sahil arasındaki kontrast kolayca işaretlendi.
28
+ - Kontrast işaretlenemedi.
29
+ - source_sentence: Bir 1997 Henry J. Kaiser Aile Vakfı anket yönetilen bakım planlarında
30
+ Amerikalılar temelde kendi bakımı ile memnun olduğunu bulundu.
31
+ sentences:
32
+ - Kaplanları takip ederken çok sessiz olmalısın.
33
+ - Henry Kaiser vakfı insanların sağlık hizmetlerinden hoşlandığını gösteriyor.
34
+ - Henry Kaiser Vakfı insanların sağlık hizmetlerinden nefret ettiğini gösteriyor.
35
+ - source_sentence: Eminim yapmışlardır.
36
+ sentences:
37
+ - Eminim öyle yapmışlardır.
38
+ - Batı Teksas'ta 100 10 dereceydi.
39
+ - Eminim yapmamışlardır.
40
+ - source_sentence: Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti,
41
+ her şeyi denedi ve daha az ilgileniyordu.
42
+ sentences:
43
+ - Oğlu her şeye olan ilgisini kaybediyordu.
44
+ - Pek bir şey yapmadım.
45
+ - Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.
46
+ datasets:
47
+ - emrecan/all-nli-tr
48
+ pipeline_tag: sentence-similarity
49
+ library_name: sentence-transformers
50
+ metrics:
51
+ - pearson_cosine
52
+ - spearman_cosine
53
+ - cosine_accuracy
54
+ model-index:
55
+ - name: SentenceTransformer based on artiwise-ai/modernbert-base-tr-uncased
56
+ results:
57
+ - task:
58
+ type: semantic-similarity
59
+ name: Semantic Similarity
60
+ dataset:
61
+ name: sts dev
62
+ type: sts-dev
63
+ metrics:
64
+ - type: pearson_cosine
65
+ value: 0.8317261658296335
66
+ name: Pearson Cosine
67
+ - type: spearman_cosine
68
+ value: 0.8334779716915757
69
+ name: Spearman Cosine
70
+ - task:
71
+ type: semantic-similarity
72
+ name: Semantic Similarity
73
+ dataset:
74
+ name: sts test
75
+ type: sts-test
76
+ metrics:
77
+ - type: pearson_cosine
78
+ value: 0.8033832035561776
79
+ name: Pearson Cosine
80
+ - type: spearman_cosine
81
+ value: 0.8081240893794807
82
+ name: Spearman Cosine
83
+ - type: pearson_cosine
84
+ value: 0.8033832035561776
85
+ name: Pearson Cosine
86
+ - type: spearman_cosine
87
+ value: 0.8081240893794807
88
+ name: Spearman Cosine
89
+ - task:
90
+ type: triplet
91
+ name: Triplet
92
+ dataset:
93
+ name: all nli tr test
94
+ type: all-nli-tr-test
95
+ metrics:
96
+ - type: cosine_accuracy
97
+ value: 0.9403370022773743
98
+ name: Cosine Accuracy
99
+ - task:
100
+ type: semantic-similarity
101
+ name: Semantic Similarity
102
+ dataset:
103
+ name: sts22 test
104
+ type: sts22-test
105
+ metrics:
106
+ - type: pearson_cosine
107
+ value: 0.48198502241312763
108
+ name: Pearson Cosine
109
+ - type: spearman_cosine
110
+ value: 0.5339803342070422
111
+ name: Spearman Cosine
112
+ - task:
113
+ type: semantic-similarity
114
+ name: Semantic Similarity
115
+ dataset:
116
+ name: stsb dev 768
117
+ type: stsb-dev-768
118
+ metrics:
119
+ - type: pearson_cosine
120
+ value: 0.8504708785024945
121
+ name: Pearson Cosine
122
+ - type: spearman_cosine
123
+ value: 0.8545740930493043
124
+ name: Spearman Cosine
125
+ - task:
126
+ type: semantic-similarity
127
+ name: Semantic Similarity
128
+ dataset:
129
+ name: stsb dev 512
130
+ type: stsb-dev-512
131
+ metrics:
132
+ - type: pearson_cosine
133
+ value: 0.8517136938786618
134
+ name: Pearson Cosine
135
+ - type: spearman_cosine
136
+ value: 0.8557175083021253
137
+ name: Spearman Cosine
138
+ - task:
139
+ type: semantic-similarity
140
+ name: Semantic Similarity
141
+ dataset:
142
+ name: stsb dev 256
143
+ type: stsb-dev-256
144
+ metrics:
145
+ - type: pearson_cosine
146
+ value: 0.8469723060661682
147
+ name: Pearson Cosine
148
+ - type: spearman_cosine
149
+ value: 0.8520958012990156
150
+ name: Spearman Cosine
151
+ - task:
152
+ type: semantic-similarity
153
+ name: Semantic Similarity
154
+ dataset:
155
+ name: stsb dev 128
156
+ type: stsb-dev-128
157
+ metrics:
158
+ - type: pearson_cosine
159
+ value: 0.8380362588675845
160
+ name: Pearson Cosine
161
+ - type: spearman_cosine
162
+ value: 0.8463279752442665
163
+ name: Spearman Cosine
164
+ - task:
165
+ type: semantic-similarity
166
+ name: Semantic Similarity
167
+ dataset:
168
+ name: stsb dev 64
169
+ type: stsb-dev-64
170
+ metrics:
171
+ - type: pearson_cosine
172
+ value: 0.8274239260291338
173
+ name: Pearson Cosine
174
+ - type: spearman_cosine
175
+ value: 0.8398529067073018
176
+ name: Spearman Cosine
177
+ - task:
178
+ type: semantic-similarity
179
+ name: Semantic Similarity
180
+ dataset:
181
+ name: stsb test 768
182
+ type: stsb-test-768
183
+ metrics:
184
+ - type: pearson_cosine
185
+ value: 0.8252032099479898
186
+ name: Pearson Cosine
187
+ - type: spearman_cosine
188
+ value: 0.8326772469479152
189
+ name: Spearman Cosine
190
+ - task:
191
+ type: semantic-similarity
192
+ name: Semantic Similarity
193
+ dataset:
194
+ name: stsb test 512
195
+ type: stsb-test-512
196
+ metrics:
197
+ - type: pearson_cosine
198
+ value: 0.8257575707499885
199
+ name: Pearson Cosine
200
+ - type: spearman_cosine
201
+ value: 0.833435201318002
202
+ name: Spearman Cosine
203
+ - task:
204
+ type: semantic-similarity
205
+ name: Semantic Similarity
206
+ dataset:
207
+ name: stsb test 256
208
+ type: stsb-test-256
209
+ metrics:
210
+ - type: pearson_cosine
211
+ value: 0.821132738273645
212
+ name: Pearson Cosine
213
+ - type: spearman_cosine
214
+ value: 0.8314809982555892
215
+ name: Spearman Cosine
216
+ - task:
217
+ type: semantic-similarity
218
+ name: Semantic Similarity
219
+ dataset:
220
+ name: stsb test 128
221
+ type: stsb-test-128
222
+ metrics:
223
+ - type: pearson_cosine
224
+ value: 0.8131512623185564
225
+ name: Pearson Cosine
226
+ - type: spearman_cosine
227
+ value: 0.8266667840848597
228
+ name: Spearman Cosine
229
+ - task:
230
+ type: semantic-similarity
231
+ name: Semantic Similarity
232
+ dataset:
233
+ name: stsb test 64
234
+ type: stsb-test-64
235
+ metrics:
236
+ - type: pearson_cosine
237
+ value: 0.7980595038048237
238
+ name: Pearson Cosine
239
+ - type: spearman_cosine
240
+ value: 0.8154520345893972
241
+ name: Spearman Cosine
242
+ ---
243
+
244
+ # SentenceTransformer based on artiwise-ai/modernbert-base-tr-uncased
245
+
246
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [artiwise-ai/modernbert-base-tr-uncased](https://huggingface.co/artiwise-ai/modernbert-base-tr-uncased) on the [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
247
+
248
+ ## Model Details
249
+
250
+ ### Model Description
251
+ - **Model Type:** Sentence Transformer
252
+ - **Base model:** [artiwise-ai/modernbert-base-tr-uncased](https://huggingface.co/artiwise-ai/modernbert-base-tr-uncased) <!-- at revision fe2ec5fcfd7afd1e0378d295dfd7fadfb55ea965 -->
253
+ - **Maximum Sequence Length:** 256 tokens
254
+ - **Output Dimensionality:** 768 dimensions
255
+ - **Similarity Function:** Cosine Similarity
256
+ - **Training Dataset:**
257
+ - [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr)
258
+ - **Language:** tr
259
+ <!-- - **License:** Unknown -->
260
+
261
+ ### Model Sources
262
+
263
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
264
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
265
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
266
+
267
+ ### Full Model Architecture
268
+
269
+ ```
270
+ SentenceTransformer(
271
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: ModernBertModel
272
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
273
+ )
274
+ ```
275
+
276
+ ## Usage
277
+
278
+ ### Direct Usage (Sentence Transformers)
279
+
280
+ First install the Sentence Transformers library:
281
+
282
+ ```bash
283
+ pip install -U sentence-transformers
284
+ ```
285
+
286
+ Then you can load this model and run inference.
287
+ ```python
288
+ from sentence_transformers import SentenceTransformer
289
+
290
+ # Download from the 🤗 Hub
291
+ model = SentenceTransformer("sentence_transformers_model_id")
292
+ # Run inference
293
+ sentences = [
294
+ 'Ve gerçekten, baba haklıydı, oğlu zaten her şeyi tecrübe etmişti, her şeyi denedi ve daha az ilgileniyordu.',
295
+ 'Oğlu her şeye olan ilgisini kaybediyordu.',
296
+ 'Baba oğlunun tecrübe için hala çok şey olduğunu biliyordu.',
297
+ ]
298
+ embeddings = model.encode(sentences)
299
+ print(embeddings.shape)
300
+ # [3, 768]
301
+
302
+ # Get the similarity scores for the embeddings
303
+ similarities = model.similarity(embeddings, embeddings)
304
+ print(similarities.shape)
305
+ # [3, 3]
306
+ ```
307
+
308
+ <!--
309
+ ### Direct Usage (Transformers)
310
+
311
+ <details><summary>Click to see the direct usage in Transformers</summary>
312
+
313
+ </details>
314
+ -->
315
+
316
+ <!--
317
+ ### Downstream Usage (Sentence Transformers)
318
+
319
+ You can finetune this model on your own dataset.
320
+
321
+ <details><summary>Click to expand</summary>
322
+
323
+ </details>
324
+ -->
325
+
326
+ <!--
327
+ ### Out-of-Scope Use
328
+
329
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
330
+ -->
331
+
332
+ ## Evaluation
333
+
334
+ ### Metrics
335
+
336
+ #### Semantic Similarity
337
+
338
+ * Datasets: `sts-dev`, `sts-test`, `sts-test` and `sts22-test`
339
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
340
+
341
+ | Metric | sts-dev | sts-test | sts22-test |
342
+ |:--------------------|:-----------|:-----------|:-----------|
343
+ | pearson_cosine | 0.8317 | 0.8034 | 0.482 |
344
+ | **spearman_cosine** | **0.8335** | **0.8081** | **0.534** |
345
+
346
+ #### Triplet
347
+
348
+ * Dataset: `all-nli-tr-test`
349
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
350
+
351
+ | Metric | Value |
352
+ |:--------------------|:-----------|
353
+ | **cosine_accuracy** | **0.9403** |
354
+
355
+ #### Semantic Similarity
356
+
357
+ * Datasets: `stsb-dev-768` and `stsb-test-768`
358
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters:
359
+ ```json
360
+ {
361
+ "truncate_dim": 768
362
+ }
363
+ ```
364
+
365
+ | Metric | stsb-dev-768 | stsb-test-768 |
366
+ |:--------------------|:-------------|:--------------|
367
+ | pearson_cosine | 0.8505 | 0.8252 |
368
+ | **spearman_cosine** | **0.8546** | **0.8327** |
369
+
370
+ #### Semantic Similarity
371
+
372
+ * Datasets: `stsb-dev-512` and `stsb-test-512`
373
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters:
374
+ ```json
375
+ {
376
+ "truncate_dim": 512
377
+ }
378
+ ```
379
+
380
+ | Metric | stsb-dev-512 | stsb-test-512 |
381
+ |:--------------------|:-------------|:--------------|
382
+ | pearson_cosine | 0.8517 | 0.8258 |
383
+ | **spearman_cosine** | **0.8557** | **0.8334** |
384
+
385
+ #### Semantic Similarity
386
+
387
+ * Datasets: `stsb-dev-256` and `stsb-test-256`
388
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters:
389
+ ```json
390
+ {
391
+ "truncate_dim": 256
392
+ }
393
+ ```
394
+
395
+ | Metric | stsb-dev-256 | stsb-test-256 |
396
+ |:--------------------|:-------------|:--------------|
397
+ | pearson_cosine | 0.847 | 0.8211 |
398
+ | **spearman_cosine** | **0.8521** | **0.8315** |
399
+
400
+ #### Semantic Similarity
401
+
402
+ * Datasets: `stsb-dev-128` and `stsb-test-128`
403
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters:
404
+ ```json
405
+ {
406
+ "truncate_dim": 128
407
+ }
408
+ ```
409
+
410
+ | Metric | stsb-dev-128 | stsb-test-128 |
411
+ |:--------------------|:-------------|:--------------|
412
+ | pearson_cosine | 0.838 | 0.8132 |
413
+ | **spearman_cosine** | **0.8463** | **0.8267** |
414
+
415
+ #### Semantic Similarity
416
+
417
+ * Datasets: `stsb-dev-64` and `stsb-test-64`
418
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) with these parameters:
419
+ ```json
420
+ {
421
+ "truncate_dim": 64
422
+ }
423
+ ```
424
+
425
+ | Metric | stsb-dev-64 | stsb-test-64 |
426
+ |:--------------------|:------------|:-------------|
427
+ | pearson_cosine | 0.8274 | 0.7981 |
428
+ | **spearman_cosine** | **0.8399** | **0.8155** |
429
+
430
+ <!--
431
+ ## Bias, Risks and Limitations
432
+
433
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
434
+ -->
435
+
436
+ <!--
437
+ ### Recommendations
438
+
439
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
440
+ -->
441
+
442
+ ## Training Details
443
+
444
+ ### Training Dataset
445
+
446
+ #### all-nli-tr
447
+
448
+ * Dataset: [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr) at [daeabfb](https://huggingface.co/datasets/emrecan/all-nli-tr/tree/daeabfbc01f82757ab998bd23ce0ddfceaa5e24d)
449
+ * Size: 5,749 training samples
450
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
451
+ * Approximate statistics based on the first 1000 samples:
452
+ | | sentence1 | sentence2 | score |
453
+ |:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
454
+ | type | string | string | float |
455
+ | details | <ul><li>min: 5 tokens</li><li>mean: 8.87 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 8.9 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.23</li><li>max: 5.0</li></ul> |
456
+ * Samples:
457
+ | sentence1 | sentence2 | score |
458
+ |:----------------------------------------------------------|:-------------------------------------------------------------------|:-----------------|
459
+ | <code>Bir uçak kalkıyor.</code> | <code>Bir hava uçağı kalkıyor.</code> | <code>5.0</code> |
460
+ | <code>Bir adam büyük bir flüt çalıyor.</code> | <code>Bir adam flüt çalıyor.</code> | <code>3.8</code> |
461
+ | <code>Bir adam pizzaya rendelenmiş peynir yayıyor.</code> | <code>Bir adam pişmemiş pizzaya rendelenmiş peynir yayıyor.</code> | <code>3.8</code> |
462
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
463
+ ```json
464
+ {
465
+ "loss": "CoSENTLoss",
466
+ "matryoshka_dims": [
467
+ 768,
468
+ 512,
469
+ 256,
470
+ 128,
471
+ 64
472
+ ],
473
+ "matryoshka_weights": [
474
+ 1,
475
+ 1,
476
+ 1,
477
+ 1,
478
+ 1
479
+ ],
480
+ "n_dims_per_step": -1
481
+ }
482
+ ```
483
+
484
+ ### Evaluation Dataset
485
+
486
+ #### all-nli-tr
487
+
488
+ * Dataset: [all-nli-tr](https://huggingface.co/datasets/emrecan/all-nli-tr) at [daeabfb](https://huggingface.co/datasets/emrecan/all-nli-tr/tree/daeabfbc01f82757ab998bd23ce0ddfceaa5e24d)
489
+ * Size: 1,500 evaluation samples
490
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
491
+ * Approximate statistics based on the first 1000 samples:
492
+ | | sentence1 | sentence2 | score |
493
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------|
494
+ | type | string | string | float |
495
+ | details | <ul><li>min: 5 tokens</li><li>mean: 13.39 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.5 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.1</li><li>max: 5.0</li></ul> |
496
+ * Samples:
497
+ | sentence1 | sentence2 | score |
498
+ |:---------------------------------------------|:----------------------------------------------------|:------------------|
499
+ | <code>Şapkalı bir adam dans ediyor.</code> | <code>Sert şapka takan bir adam dans ediyor.</code> | <code>5.0</code> |
500
+ | <code>Küçük bir çocuk ata biniyor.</code> | <code>Bir çocuk ata biniyor.</code> | <code>4.75</code> |
501
+ | <code>Bir adam yılana fare yediriyor.</code> | <code>Adam yılana fare yediriyor.</code> | <code>5.0</code> |
502
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
503
+ ```json
504
+ {
505
+ "loss": "CoSENTLoss",
506
+ "matryoshka_dims": [
507
+ 768,
508
+ 512,
509
+ 256,
510
+ 128,
511
+ 64
512
+ ],
513
+ "matryoshka_weights": [
514
+ 1,
515
+ 1,
516
+ 1,
517
+ 1,
518
+ 1
519
+ ],
520
+ "n_dims_per_step": -1
521
+ }
522
+ ```
523
+
524
+ ### Training Hyperparameters
525
+ #### Non-Default Hyperparameters
526
+
527
+ - `eval_strategy`: steps
528
+ - `per_device_train_batch_size`: 32
529
+ - `per_device_eval_batch_size`: 32
530
+ - `learning_rate`: 1e-05
531
+ - `weight_decay`: 0.01
532
+ - `num_train_epochs`: 10
533
+ - `warmup_ratio`: 0.1
534
+ - `warmup_steps`: 144
535
+ - `bf16`: True
536
+
537
+ #### All Hyperparameters
538
+ <details><summary>Click to expand</summary>
539
+
540
+ - `overwrite_output_dir`: False
541
+ - `do_predict`: False
542
+ - `eval_strategy`: steps
543
+ - `prediction_loss_only`: True
544
+ - `per_device_train_batch_size`: 32
545
+ - `per_device_eval_batch_size`: 32
546
+ - `per_gpu_train_batch_size`: None
547
+ - `per_gpu_eval_batch_size`: None
548
+ - `gradient_accumulation_steps`: 1
549
+ - `eval_accumulation_steps`: None
550
+ - `torch_empty_cache_steps`: None
551
+ - `learning_rate`: 1e-05
552
+ - `weight_decay`: 0.01
553
+ - `adam_beta1`: 0.9
554
+ - `adam_beta2`: 0.999
555
+ - `adam_epsilon`: 1e-08
556
+ - `max_grad_norm`: 1.0
557
+ - `num_train_epochs`: 10
558
+ - `max_steps`: -1
559
+ - `lr_scheduler_type`: linear
560
+ - `lr_scheduler_kwargs`: {}
561
+ - `warmup_ratio`: 0.1
562
+ - `warmup_steps`: 144
563
+ - `log_level`: passive
564
+ - `log_level_replica`: warning
565
+ - `log_on_each_node`: True
566
+ - `logging_nan_inf_filter`: True
567
+ - `save_safetensors`: True
568
+ - `save_on_each_node`: False
569
+ - `save_only_model`: False
570
+ - `restore_callback_states_from_checkpoint`: False
571
+ - `no_cuda`: False
572
+ - `use_cpu`: False
573
+ - `use_mps_device`: False
574
+ - `seed`: 42
575
+ - `data_seed`: None
576
+ - `jit_mode_eval`: False
577
+ - `use_ipex`: False
578
+ - `bf16`: True
579
+ - `fp16`: False
580
+ - `fp16_opt_level`: O1
581
+ - `half_precision_backend`: auto
582
+ - `bf16_full_eval`: False
583
+ - `fp16_full_eval`: False
584
+ - `tf32`: None
585
+ - `local_rank`: 0
586
+ - `ddp_backend`: None
587
+ - `tpu_num_cores`: None
588
+ - `tpu_metrics_debug`: False
589
+ - `debug`: []
590
+ - `dataloader_drop_last`: False
591
+ - `dataloader_num_workers`: 0
592
+ - `dataloader_prefetch_factor`: None
593
+ - `past_index`: -1
594
+ - `disable_tqdm`: False
595
+ - `remove_unused_columns`: True
596
+ - `label_names`: None
597
+ - `load_best_model_at_end`: False
598
+ - `ignore_data_skip`: False
599
+ - `fsdp`: []
600
+ - `fsdp_min_num_params`: 0
601
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
602
+ - `fsdp_transformer_layer_cls_to_wrap`: None
603
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
604
+ - `deepspeed`: None
605
+ - `label_smoothing_factor`: 0.0
606
+ - `optim`: adamw_torch
607
+ - `optim_args`: None
608
+ - `adafactor`: False
609
+ - `group_by_length`: False
610
+ - `length_column_name`: length
611
+ - `ddp_find_unused_parameters`: None
612
+ - `ddp_bucket_cap_mb`: None
613
+ - `ddp_broadcast_buffers`: False
614
+ - `dataloader_pin_memory`: True
615
+ - `dataloader_persistent_workers`: False
616
+ - `skip_memory_metrics`: True
617
+ - `use_legacy_prediction_loop`: False
618
+ - `push_to_hub`: False
619
+ - `resume_from_checkpoint`: None
620
+ - `hub_model_id`: None
621
+ - `hub_strategy`: every_save
622
+ - `hub_private_repo`: None
623
+ - `hub_always_push`: False
624
+ - `gradient_checkpointing`: False
625
+ - `gradient_checkpointing_kwargs`: None
626
+ - `include_inputs_for_metrics`: False
627
+ - `include_for_metrics`: []
628
+ - `eval_do_concat_batches`: True
629
+ - `fp16_backend`: auto
630
+ - `push_to_hub_model_id`: None
631
+ - `push_to_hub_organization`: None
632
+ - `mp_parameters`:
633
+ - `auto_find_batch_size`: False
634
+ - `full_determinism`: False
635
+ - `torchdynamo`: None
636
+ - `ray_scope`: last
637
+ - `ddp_timeout`: 1800
638
+ - `torch_compile`: False
639
+ - `torch_compile_backend`: None
640
+ - `torch_compile_mode`: None
641
+ - `include_tokens_per_second`: False
642
+ - `include_num_input_tokens_seen`: False
643
+ - `neftune_noise_alpha`: None
644
+ - `optim_target_modules`: None
645
+ - `batch_eval_metrics`: False
646
+ - `eval_on_start`: False
647
+ - `use_liger_kernel`: False
648
+ - `eval_use_gather_object`: False
649
+ - `average_tokens_across_devices`: False
650
+ - `prompts`: None
651
+ - `batch_sampler`: batch_sampler
652
+ - `multi_dataset_batch_sampler`: proportional
653
+
654
+ </details>
655
+
656
+ ### Training Logs
657
+ | Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | all-nli-tr-test_cosine_accuracy | sts22-test_spearman_cosine | stsb-dev-768_spearman_cosine | stsb-dev-512_spearman_cosine | stsb-dev-256_spearman_cosine | stsb-dev-128_spearman_cosine | stsb-dev-64_spearman_cosine | stsb-test-768_spearman_cosine | stsb-test-512_spearman_cosine | stsb-test-256_spearman_cosine | stsb-test-128_spearman_cosine | stsb-test-64_spearman_cosine |
658
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:-------------------------------:|:--------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:-----------------------------:|:----------------------------:|
659
+ | 0.1327 | 1000 | 6.5142 | 3.0122 | 0.8163 | - | - | - | - | - | - | - | - | - | - | - | - | - |
660
+ | 0.2655 | 2000 | 3.063 | 2.5473 | 0.8284 | - | - | - | - | - | - | - | - | - | - | - | - | - |
661
+ | 0.3982 | 3000 | 2.5516 | 2.3314 | 0.8274 | - | - | - | - | - | - | - | - | - | - | - | - | - |
662
+ | 0.5310 | 4000 | 2.2681 | 2.2253 | 0.8330 | - | - | - | - | - | - | - | - | - | - | - | - | - |
663
+ | 0.6637 | 5000 | 2.1122 | 2.1568 | 0.8329 | - | - | - | - | - | - | - | - | - | - | - | - | - |
664
+ | 0.7965 | 6000 | 1.9427 | 2.0958 | 0.8359 | - | - | - | - | - | - | - | - | - | - | - | - | - |
665
+ | 0.9292 | 7000 | 1.856 | 2.0770 | 0.8335 | - | - | - | - | - | - | - | - | - | - | - | - | - |
666
+ | -1 | -1 | - | - | - | 0.8081 | 0.9403 | 0.5340 | - | - | - | - | - | - | - | - | - | - |
667
+ | 1.1111 | 200 | 39.4792 | 29.2091 | - | - | - | - | 0.8327 | 0.8323 | 0.8284 | 0.8243 | 0.8135 | - | - | - | - | - |
668
+ | 2.2222 | 400 | 28.0902 | 29.4698 | - | - | - | - | 0.8539 | 0.8542 | 0.8509 | 0.8473 | 0.8387 | - | - | - | - | - |
669
+ | 3.3333 | 600 | 26.8504 | 31.4975 | - | - | - | - | 0.8532 | 0.8535 | 0.8495 | 0.8443 | 0.8376 | - | - | - | - | - |
670
+ | 4.4444 | 800 | 25.7399 | 33.3569 | - | - | - | - | 0.8538 | 0.8542 | 0.8505 | 0.8455 | 0.8378 | - | - | - | - | - |
671
+ | 5.5556 | 1000 | 24.6547 | 35.7253 | - | - | - | - | 0.8537 | 0.8545 | 0.8510 | 0.8459 | 0.8393 | - | - | - | - | - |
672
+ | 6.6667 | 1200 | 23.589 | 37.8066 | - | - | - | - | 0.8548 | 0.8557 | 0.8522 | 0.8466 | 0.8398 | - | - | - | - | - |
673
+ | 7.7778 | 1400 | 22.7868 | 39.3319 | - | - | - | - | 0.8546 | 0.8557 | 0.8521 | 0.8464 | 0.8396 | - | - | - | - | - |
674
+ | 8.8889 | 1600 | 22.2741 | 40.3429 | - | - | - | - | 0.8548 | 0.8560 | 0.8524 | 0.8466 | 0.8400 | - | - | - | - | - |
675
+ | 10.0 | 1800 | 21.9617 | 40.6515 | - | - | - | - | 0.8546 | 0.8557 | 0.8521 | 0.8463 | 0.8399 | - | - | - | - | - |
676
+ | -1 | -1 | - | - | - | - | - | - | - | - | - | - | - | 0.8327 | 0.8334 | 0.8315 | 0.8267 | 0.8155 |
677
+
678
+
679
+ ### Framework Versions
680
+ - Python: 3.11.13
681
+ - Sentence Transformers: 4.1.0
682
+ - Transformers: 4.52.4
683
+ - PyTorch: 2.6.0+cu124
684
+ - Accelerate: 1.7.0
685
+ - Datasets: 3.6.0
686
+ - Tokenizers: 0.21.1
687
+
688
+ ## Citation
689
+
690
+ ### BibTeX
691
+
692
+ #### Sentence Transformers
693
+ ```bibtex
694
+ @inproceedings{reimers-2019-sentence-bert,
695
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
696
+ author = "Reimers, Nils and Gurevych, Iryna",
697
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
698
+ month = "11",
699
+ year = "2019",
700
+ publisher = "Association for Computational Linguistics",
701
+ url = "https://arxiv.org/abs/1908.10084",
702
+ }
703
+ ```
704
+
705
+ #### MatryoshkaLoss
706
+ ```bibtex
707
+ @misc{kusupati2024matryoshka,
708
+ title={Matryoshka Representation Learning},
709
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
710
+ year={2024},
711
+ eprint={2205.13147},
712
+ archivePrefix={arXiv},
713
+ primaryClass={cs.LG}
714
+ }
715
+ ```
716
+
717
+ #### CoSENTLoss
718
+ ```bibtex
719
+ @online{kexuefm-8847,
720
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
721
+ author={Su Jianlin},
722
+ year={2022},
723
+ month={Jan},
724
+ url={https://kexue.fm/archives/8847},
725
+ }
726
+ ```
727
+
728
+ <!--
729
+ ## Glossary
730
+
731
+ *Clearly define terms in order to be accessible across audiences.*
732
+ -->
733
+
734
+ <!--
735
+ ## Model Card Authors
736
+
737
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
738
+ -->
739
+
740
+ <!--
741
+ ## Model Card Contact
742
+
743
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
744
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ModernBertModel"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50281,
8
+ "classifier_activation": "gelu",
9
+ "classifier_bias": false,
10
+ "classifier_dropout": 0.0,
11
+ "classifier_pooling": "mean",
12
+ "cls_token_id": 2,
13
+ "decoder_bias": true,
14
+ "deterministic_flash_attn": false,
15
+ "embedding_dropout": 0.0,
16
+ "eos_token_id": 50282,
17
+ "global_attn_every_n_layers": 3,
18
+ "global_rope_theta": 160000.0,
19
+ "gradient_checkpointing": false,
20
+ "hidden_activation": "gelu",
21
+ "hidden_size": 768,
22
+ "initializer_cutoff_factor": 2.0,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 1152,
25
+ "layer_norm_eps": 1e-05,
26
+ "local_attention": 128,
27
+ "local_rope_theta": 10000.0,
28
+ "mask_token_id": 4,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 22,
37
+ "pad_token_id": 0,
38
+ "position_embedding_type": "absolute",
39
+ "repad_logits_with_grad": false,
40
+ "sep_token_id": 3,
41
+ "sparse_pred_ignore_index": -100,
42
+ "sparse_prediction": false,
43
+ "torch_dtype": "float32",
44
+ "transformers_version": "4.52.4",
45
+ "unk_token_id": 1,
46
+ "vocab_size": 32000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a919df608e22a098ffb2545481d6d91bea0d037ad4e5191aa13017ffe428d703
3
+ size 539643640
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_len": 8192,
51
+ "max_length": 8192,
52
+ "model_input_names": [
53
+ "input_ids",
54
+ "attention_mask"
55
+ ],
56
+ "model_max_length": 8192,
57
+ "never_split": null,
58
+ "pad_to_multiple_of": null,
59
+ "pad_token": "[PAD]",
60
+ "pad_token_type_id": 0,
61
+ "padding_side": "right",
62
+ "sep_token": "[SEP]",
63
+ "stride": 0,
64
+ "strip_accents": false,
65
+ "tokenize_chinese_chars": true,
66
+ "tokenizer_class": "PreTrainedTokenizer",
67
+ "truncation_side": "right",
68
+ "truncation_strategy": "longest_first",
69
+ "unk_token": "[UNK]"
70
+ }