nguyen599 commited on
Commit
8d2f37c
·
verified ·
1 Parent(s): a69532b

2000 steps checkpoint

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - vi
6
+ metrics:
7
+ - f1
8
+ base_model:
9
+ - FacebookAI/xlm-roberta-base
10
+ pipeline_tag: text-classification
11
+ tags:
12
+ - finance
13
+ - esg
14
+ - financial-text-analysis
15
+ - bert
16
+ library_name: transformers
17
+ widget:
18
+ - text: "Over three chapters, it covers a range of topics from energy efficiency and renewable energy to the circular economy and sustainable transportation."
19
+ ---
20
+
21
+ ESG analysis can help investors determine a business' long-term sustainability and identify associated risks. ViXML-RoBERTa-ESG-base is a [https://huggingface.co/FacebookAI/xlm-roberta-base](FacebookAI/xlm-roberta-base) model fine-tuned on [ViEn-ESG-100](https://huggingface.co/nguyen599/ViEn-ESG-100) dataset, include 100,000 annotated sentences from Vietnam, English news and ESG reports.
22
+
23
+ **Input**: A financial text.
24
+
25
+ **Output**: Environmental, Social, Governance or None.
26
+
27
+ **Language support**: English, Vietnamese
28
+
29
+ # How to use
30
+ You can use this model with Transformers pipeline for ESG classification.
31
+ ```python
32
+ # tested in transformers==4.51.0
33
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
34
+
35
+ esgbert = AutoModelForSequenceClassification.from_pretrained('nguyen599/ViXML-RoBERTa-ESG-base',num_labels=4)
36
+ tokenizer = AutoTokenizer.from_pretrained('nguyen599/ViXML-RoBERTa-ESG-base')
37
+ nlp = pipeline("text-classification", model=esgbert, tokenizer=tokenizer)
38
+ results = nlp('Over three chapters, it covers a range of topics from energy efficiency and renewable energy to the circular economy and sustainable transportation.')
39
+ print(results) # [{'label': 'Environment', 'score': 0.9206041026115417}]
40
+
41
+ ```
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "Neural",
14
+ "1": "Environmental",
15
+ "2": "Social",
16
+ "3": "Governance"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "Environmental": 1,
22
+ "Governance": 3,
23
+ "Neural": 0,
24
+ "Social": 2
25
+ },
26
+ "layer_norm_eps": 1e-05,
27
+ "max_position_embeddings": 514,
28
+ "model_type": "xlm-roberta",
29
+ "num_attention_heads": 12,
30
+ "num_hidden_layers": 12,
31
+ "output_past": true,
32
+ "pad_token_id": 1,
33
+ "position_embedding_type": "absolute",
34
+ "problem_type": "multi_label_classification",
35
+ "torch_dtype": "float32",
36
+ "transformers_version": "4.51.0",
37
+ "type_vocab_size": 1,
38
+ "use_cache": true,
39
+ "vocab_size": 250002
40
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4374af0f9cac10ae977bf13fa2097fbc31a0b1219a016aba4ec8573b356627a
3
+ size 1112211160
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a56def25aa40facc030ea8b0b87f3688e4b3c39eb8b45d5702b3a1300fe2a20
3
+ size 17082734
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 512,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }