2000 steps checkpoint
Browse files- .gitattributes +1 -0
- README.md +41 -0
- config.json +40 -0
- model.safetensors +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- vi
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
base_model:
|
9 |
+
- FacebookAI/xlm-roberta-base
|
10 |
+
pipeline_tag: text-classification
|
11 |
+
tags:
|
12 |
+
- finance
|
13 |
+
- esg
|
14 |
+
- financial-text-analysis
|
15 |
+
- bert
|
16 |
+
library_name: transformers
|
17 |
+
widget:
|
18 |
+
- text: "Over three chapters, it covers a range of topics from energy efficiency and renewable energy to the circular economy and sustainable transportation."
|
19 |
+
---
|
20 |
+
|
21 |
+
ESG analysis can help investors determine a business' long-term sustainability and identify associated risks. ViXML-RoBERTa-ESG-base is a [https://huggingface.co/FacebookAI/xlm-roberta-base](FacebookAI/xlm-roberta-base) model fine-tuned on [ViEn-ESG-100](https://huggingface.co/nguyen599/ViEn-ESG-100) dataset, include 100,000 annotated sentences from Vietnam, English news and ESG reports.
|
22 |
+
|
23 |
+
**Input**: A financial text.
|
24 |
+
|
25 |
+
**Output**: Environmental, Social, Governance or None.
|
26 |
+
|
27 |
+
**Language support**: English, Vietnamese
|
28 |
+
|
29 |
+
# How to use
|
30 |
+
You can use this model with Transformers pipeline for ESG classification.
|
31 |
+
```python
|
32 |
+
# tested in transformers==4.51.0
|
33 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
34 |
+
|
35 |
+
esgbert = AutoModelForSequenceClassification.from_pretrained('nguyen599/ViXML-RoBERTa-ESG-base',num_labels=4)
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained('nguyen599/ViXML-RoBERTa-ESG-base')
|
37 |
+
nlp = pipeline("text-classification", model=esgbert, tokenizer=tokenizer)
|
38 |
+
results = nlp('Over three chapters, it covers a range of topics from energy efficiency and renewable energy to the circular economy and sustainable transportation.')
|
39 |
+
print(results) # [{'label': 'Environment', 'score': 0.9206041026115417}]
|
40 |
+
|
41 |
+
```
|
config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"XLMRobertaForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "Neural",
|
14 |
+
"1": "Environmental",
|
15 |
+
"2": "Social",
|
16 |
+
"3": "Governance"
|
17 |
+
},
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"intermediate_size": 3072,
|
20 |
+
"label2id": {
|
21 |
+
"Environmental": 1,
|
22 |
+
"Governance": 3,
|
23 |
+
"Neural": 0,
|
24 |
+
"Social": 2
|
25 |
+
},
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"max_position_embeddings": 514,
|
28 |
+
"model_type": "xlm-roberta",
|
29 |
+
"num_attention_heads": 12,
|
30 |
+
"num_hidden_layers": 12,
|
31 |
+
"output_past": true,
|
32 |
+
"pad_token_id": 1,
|
33 |
+
"position_embedding_type": "absolute",
|
34 |
+
"problem_type": "multi_label_classification",
|
35 |
+
"torch_dtype": "float32",
|
36 |
+
"transformers_version": "4.51.0",
|
37 |
+
"type_vocab_size": 1,
|
38 |
+
"use_cache": true,
|
39 |
+
"vocab_size": 250002
|
40 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4374af0f9cac10ae977bf13fa2097fbc31a0b1219a016aba4ec8573b356627a
|
3 |
+
size 1112211160
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a56def25aa40facc030ea8b0b87f3688e4b3c39eb8b45d5702b3a1300fe2a20
|
3 |
+
size 17082734
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|