Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,291 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
tags:
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
9 |
|
|
|
10 |
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
|
|
|
|
|
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
|
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
**
|
|
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
|
|
182 |
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
|
|
|
|
|
|
188 |
|
189 |
-
|
|
|
|
|
|
|
190 |
|
191 |
-
[More Information Needed]
|
192 |
|
193 |
-
##
|
194 |
|
195 |
-
[
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- automatic-speech-recognition
|
5 |
+
- audio-visual-speech-recognition
|
6 |
+
- multimodal
|
7 |
+
- speech-recognition
|
8 |
+
- lip-reading
|
9 |
+
- cocktail-party
|
10 |
+
- noise-robust
|
11 |
+
- av-hubert
|
12 |
+
- transformer
|
13 |
+
- pytorch
|
14 |
+
- audio
|
15 |
+
- video
|
16 |
+
- english
|
17 |
+
- lrs2
|
18 |
+
- voxceleb2
|
19 |
+
- ctc
|
20 |
+
- attention
|
21 |
+
- beam-search
|
22 |
+
- multi-speaker
|
23 |
+
- noisy-speech
|
24 |
+
datasets:
|
25 |
+
- nguyenvulebinh/AVYT
|
26 |
+
language:
|
27 |
+
- en
|
28 |
+
metrics:
|
29 |
+
- wer
|
30 |
+
pipeline_tag: automatic-speech-recognition
|
31 |
+
---
|
32 |
+
|
33 |
+
# AVSRCocktail: Audio-Visual Speech Recognition for Cocktail Party Scenarios
|
34 |
+
|
35 |
+
**Official implementation** of "[Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178)" (Interspeech 2025).
|
36 |
+
|
37 |
+
A robust audio-visual speech recognition system designed for multi-speaker environments and noisy cocktail party scenarios. The model combines lip reading and audio processing to achieve superior performance in challenging acoustic conditions with background noise and speaker interference.
|
38 |
+
|
39 |
+
## Getting Started
|
40 |
+
|
41 |
+
### Sections
|
42 |
+
1. <a href="#install">Installation</a>
|
43 |
+
2. <a href="#evaluation">Evaluation</a>
|
44 |
+
3. <a href="#training">Training</a>
|
45 |
+
|
46 |
+
## <a id="install">1. Installation </a>
|
47 |
+
|
48 |
+
Following this steps:
|
49 |
+
|
50 |
+
```sh
|
51 |
+
# Clone the baseline code repo
|
52 |
+
git clone https://github.com/nguyenvulebinh/AVSRCocktail.git
|
53 |
+
cd AVSRCocktail
|
54 |
+
|
55 |
+
# Create Conda environment
|
56 |
+
conda create --name AVSRCocktail python=3.11
|
57 |
+
conda activate AVSRCocktail
|
58 |
+
|
59 |
+
# Install FFmpeg, if it's not already installed.
|
60 |
+
conda install ffmpeg
|
61 |
+
|
62 |
+
# Install dependencies
|
63 |
+
pip install -r requirements.txt
|
64 |
+
```
|
65 |
+
|
66 |
+
## <a id="evaluation">2. Evaluation</a>
|
67 |
+
|
68 |
+
The evaluation script `script/evaluation.py` provides comprehensive evaluation capabilities for the AVSR Cocktail model on multiple datasets with various noise conditions and interference scenarios.
|
69 |
+
|
70 |
+
### Quick Start
|
71 |
+
|
72 |
+
**Basic evaluation on LRS2 test set:**
|
73 |
+
```sh
|
74 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test
|
75 |
+
```
|
76 |
+
|
77 |
+
**Evaluation on AVCocktail dataset:**
|
78 |
+
```sh
|
79 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0
|
80 |
+
```
|
81 |
+
|
82 |
+
### Supported Datasets
|
83 |
+
|
84 |
+
#### 1. LRS2 Dataset
|
85 |
+
Evaluate on the LRS2 dataset with various noise conditions:
|
86 |
+
|
87 |
+
**Available test sets:**
|
88 |
+
- `test`: Clean test set
|
89 |
+
- `test_snr_n5_interferer_1`: SNR -5dB with 1 interferer
|
90 |
+
- `test_snr_n5_interferer_2`: SNR -5dB with 2 interferers
|
91 |
+
- `test_snr_0_interferer_1`: SNR 0dB with 1 interferer
|
92 |
+
- `test_snr_0_interferer_2`: SNR 0dB with 2 interferers
|
93 |
+
- `test_snr_5_interferer_1`: SNR 5dB with 1 interferer
|
94 |
+
- `test_snr_5_interferer_2`: SNR 5dB with 2 interferers
|
95 |
+
- `test_snr_10_interferer_1`: SNR 10dB with 1 interferer
|
96 |
+
- `test_snr_10_interferer_2`: SNR 10dB with 2 interferers
|
97 |
+
- `*`: Evaluate on all test sets and report average WER
|
98 |
+
|
99 |
+
**Example:**
|
100 |
+
```sh
|
101 |
+
# Evaluate on clean test set
|
102 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test
|
103 |
+
|
104 |
+
# Evaluate on noisy conditions
|
105 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id test_snr_0_interferer_1
|
106 |
+
|
107 |
+
# Evaluate on all conditions
|
108 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name lrs2 --set_id "*"
|
109 |
+
```
|
110 |
+
|
111 |
+
#### 2. AVCocktail Dataset
|
112 |
+
Evaluate on the AVCocktail cocktail party dataset:
|
113 |
+
|
114 |
+
**Available video sets:**
|
115 |
+
- `video_0` to `video_50`: Individual video sessions
|
116 |
+
- `*`: Evaluate on all video sessions and report average WER
|
117 |
+
|
118 |
+
The evaluation reports WER for three different chunking strategies:
|
119 |
+
- `asd_chunk`: Chunks based on Active Speaker Detection
|
120 |
+
- `fixed_chunk`: Fixed-duration chunks
|
121 |
+
- `gold_chunk`: Ground truth optimal chunks
|
122 |
|
123 |
+
**Example:**
|
124 |
+
```sh
|
125 |
+
# Evaluate on specific video
|
126 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id video_0
|
127 |
|
128 |
+
# Evaluate on all videos
|
129 |
+
python script/evaluation.py --model_type avsr_cocktail --dataset_name AVCocktail --set_id "*"
|
130 |
+
```
|
131 |
|
132 |
+
### Configuration Options
|
133 |
|
134 |
+
#### Model Configuration
|
135 |
+
- `--model_type`: Model architecture to use (use `avsr_cocktail` for the AVSR Cocktail model)
|
136 |
+
- `--checkpoint_path`: Path to custom model checkpoint (default: uses pretrained `nguyenvulebinh/AVSRCocktail`)
|
137 |
+
- `--cache_dir`: Directory to cache downloaded models (default: `./model-bin`)
|
138 |
|
139 |
+
#### Processing Parameters
|
140 |
+
- `--max_length`: Maximum length of video segments in seconds (default: 15)
|
141 |
+
- `--beam_size`: Beam size for beam search decoding (default: 3)
|
142 |
|
143 |
+
#### Dataset Parameters
|
144 |
+
- `--dataset_name`: Dataset to evaluate on (`lrs2` or `AVCocktail`)
|
145 |
+
- `--set_id`: Specific subset to evaluate (see dataset-specific options above)
|
146 |
|
147 |
+
#### Output Options
|
148 |
+
- `--verbose`: Enable verbose output during processing
|
149 |
+
- `--output_dir_name`: Name of output directory for session processing (default: `output`)
|
150 |
+
|
151 |
+
### Advanced Usage
|
152 |
+
|
153 |
+
**Custom model checkpoint:**
|
154 |
+
```sh
|
155 |
+
python script/evaluation.py \
|
156 |
+
--model_type avsr_cocktail \
|
157 |
+
--dataset_name lrs2 \
|
158 |
+
--set_id test \
|
159 |
+
--checkpoint_path ./model-bin/my_custom_model \
|
160 |
+
--cache_dir ./custom_cache
|
161 |
+
```
|
162 |
+
|
163 |
+
**Optimized inference settings:**
|
164 |
+
```sh
|
165 |
+
python script/evaluation.py \
|
166 |
+
--model_type avsr_cocktail \
|
167 |
+
--dataset_name AVCocktail \
|
168 |
+
--set_id "*" \
|
169 |
+
--max_length 10 \
|
170 |
+
--beam_size 5 \
|
171 |
+
--verbose
|
172 |
+
```
|
173 |
+
|
174 |
+
### Output Format
|
175 |
+
|
176 |
+
The evaluation script outputs Word Error Rate (WER) scores:
|
177 |
+
|
178 |
+
**LRS2 evaluation output:**
|
179 |
+
```
|
180 |
+
WER test: 0.1234
|
181 |
+
```
|
182 |
+
|
183 |
+
**AVCocktail evaluation output:**
|
184 |
+
```
|
185 |
+
WER video_0 asd_chunk: 0.1234
|
186 |
+
WER video_0 fixed_chunk: 0.1456
|
187 |
+
WER video_0 gold_chunk: 0.1123
|
188 |
+
```
|
189 |
+
|
190 |
+
When using `--set_id "*"`, the script reports both individual and average WER scores across all test conditions.
|
191 |
+
|
192 |
+
## <a id="training">3. Training</a>
|
193 |
+
|
194 |
+
### Model Architecture
|
195 |
+
|
196 |
+
- **Encoder**: Pre-trained AV-HuBERT large model (`nguyenvulebinh/avhubert_encoder_large_noise_pt_noise_ft_433h`)
|
197 |
+
- **Decoder**: Transformer decoder with CTC/Attention joint training
|
198 |
+
- **Tokenization**: SentencePiece unigram tokenizer with 5000 vocabulary units
|
199 |
+
- **Input**: Video frames are cropped to the mouth region of interest using a 96 × 96 bounding box, while the audio is sampled at a 16 kHz rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
### Training Data
|
202 |
|
203 |
+
The model is trained on multiple large-scale datasets that have been preprocessed and are ready for the training pipeline. All datasets are hosted on Hugging Face at [nguyenvulebinh/AVYT](https://huggingface.co/datasets/nguyenvulebinh/AVYT) and include:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
| Dataset | Size |
|
206 |
+
|---------|------|
|
207 |
+
| **LRS2** | ~145k samples |
|
208 |
+
| **VoxCeleb2** | ~540k samples |
|
209 |
+
| **AVYT** | ~717k samples |
|
210 |
+
| **AVYT-mix** | ~483k samples |
|
211 |
|
212 |
+
The information about these datasets can be found in the [Cocktail-Party Audio-Visual Speech Recognition](https://arxiv.org/abs/2506.02178) paper.
|
213 |
|
214 |
+
**Dataset Features:**
|
215 |
+
- **Preprocessed**: All audio-visual data is pre-processed and ready for direct input to the training pipeline
|
216 |
+
- **Multi-modal**: Each sample contains synchronized audio and video (mouth crop) data
|
217 |
+
- **Labeled**: Text transcriptions for supervised learning
|
218 |
|
219 |
+
The training pipeline automatically handles dataset loading and loads data in [streaming mode](https://huggingface.co/docs/datasets/stream). However, to make training faster and more stable, it's recommended to download all datasets before running the training pipeline. The storage needed to save all datasets is approximately 1.46 TB.
|
220 |
|
221 |
+
### Training Process
|
222 |
|
223 |
+
The training script is available at `script/train.py`.
|
224 |
|
225 |
+
**Multi-GPU Distributed Training:**
|
226 |
+
```sh
|
227 |
+
# Set environment variables for distributed training
|
228 |
+
export NCCL_DEBUG=WARN
|
229 |
+
export OMP_NUM_THREADS=1
|
230 |
+
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
231 |
|
232 |
+
# Run with torchrun for multi-GPU training (using default parameters)
|
233 |
+
torchrun --nproc_per_node 4 script/train.py
|
234 |
|
235 |
+
# Run with custom parameters
|
236 |
+
torchrun --nproc_per_node 4 script/train.py \
|
237 |
+
--streaming_dataset \
|
238 |
+
--batch_size 6 \
|
239 |
+
--max_steps 400000 \
|
240 |
+
--gradient_accumulation_steps 2 \
|
241 |
+
--save_steps 2000 \
|
242 |
+
--eval_steps 2000 \
|
243 |
+
--learning_rate 1e-4 \
|
244 |
+
--warmup_steps 4000 \
|
245 |
+
--checkpoint_name avsr_avhubert_ctcattn \
|
246 |
+
--model_name_or_path ./model-bin/avsr_cocktail \
|
247 |
+
--output_dir ./model-bin
|
248 |
+
```
|
249 |
|
250 |
+
**Model Output:**
|
251 |
+
The trained model will be saved by default in `model-bin/{checkpoint_name}/` (default: `model-bin/avsr_avhubert_ctcattn/`).
|
252 |
|
253 |
+
#### Configuration Options
|
254 |
|
255 |
+
You can customize training parameters using command line arguments:
|
256 |
|
257 |
+
**Dataset Options:**
|
258 |
+
- `--streaming_dataset`: Use streaming mode for datasets (default: False)
|
259 |
|
260 |
+
**Training Parameters:**
|
261 |
+
- `--batch_size`: Batch size per device (default: 6)
|
262 |
+
- `--max_steps`: Total training steps (default: 400000)
|
263 |
+
- `--learning_rate`: Initial learning rate (default: 1e-4)
|
264 |
+
- `--warmup_steps`: Learning rate warmup steps (default: 4000)
|
265 |
+
- `--gradient_accumulation_steps`: Gradient accumulation (default: 2)
|
266 |
|
267 |
+
**Checkpoint and Logging:**
|
268 |
+
- `--save_steps`: Checkpoint saving frequency (default: 2000)
|
269 |
+
- `--eval_steps`: Evaluation frequency (default: 2000)
|
270 |
+
- `--log_interval`: Logging frequency (default: 25)
|
271 |
+
- `--checkpoint_name`: Name for the checkpoint directory (default: "avsr_avhubert_ctcattn")
|
272 |
+
- `--resume_from_checkpoint`: Resume training from last checkpoint (default: False)
|
273 |
|
274 |
+
**Model and Output:**
|
275 |
+
- `--model_name_or_path`: Path to pretrained model (default: "./model-bin/avsr_cocktail")
|
276 |
+
- `--output_dir`: Output directory for checkpoints (default: "./model-bin")
|
277 |
+
- `--report_to`: Logging backend, "wandb" or "none" (default: "none")
|
278 |
|
279 |
+
**Hardware Requirements:**
|
280 |
+
- **GPU Memory**: The default training configuration is designed to fit within **24GB GPU memory**
|
281 |
+
- **Training Time**: With 2x NVIDIA Titan RTX 24GB GPUs, training takes approximately **56 hours per epoch**
|
282 |
+
- **Convergence**: **200,000 steps** (total batch size 24) is typically sufficient for model convergence
|
283 |
|
|
|
284 |
|
285 |
+
## Acknowledgement
|
286 |
|
287 |
+
This repository is built using the [auto_avsr](https://github.com/mpc001/auto_avsr), [espnet](https://github.com/espnet/espnet), and [avhubert](https://github.com/facebookresearch/av_hubert) repositories.
|
288 |
|
289 |
+
## Contact
|
290 |
|
291 |