File size: 5,160 Bytes
3236ea6
 
6e70a89
 
8eeba7f
 
699e2e7
6e70a89
 
 
 
 
 
 
 
 
 
 
 
b051e5e
8eeba7f
 
 
 
 
 
 
 
b051e5e
 
6295f1d
5413461
6295f1d
 
b051e5e
6295f1d
699e2e7
3236ea6
6e70a89
 
 
 
f38d0dc
6e70a89
9674f50
 
6e70a89
 
5911cb4
6e70a89
c05b8fe
6e70a89
 
 
 
5911cb4
 
6e70a89
e83c980
6e70a89
5911cb4
 
 
 
 
6e70a89
4b2c3d4
6e70a89
 
 
f38d0dc
6e70a89
e5ed5d6
6e70a89
 
26a256e
6e70a89
 
26a256e
6e70a89
26a256e
 
6e70a89
 
197feb1
6e70a89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f38d0dc
741dec4
 
b8acf0a
741dec4
b8acf0a
6e70a89
bea3ee7
 
 
 
 
 
b6d260c
bea3ee7
b6d260c
 
 
 
bea3ee7
 
 
 
6e70a89
 
699e2e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: apache-2.0
datasets:
- Dahoas/synthetic-instruct-gptj-pairwise
- databricks/databricks-dolly-15k
- HuggingFaceH4/instruction-dataset
- nicholasKluge/instruct-aira-dataset
language:
- en
metrics:
- bleu
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
pipeline_tag: text-generation
widget:
- text: <|startoftext|>Hello! What is your name?<|endoftext|>
  example_title: Greetings
- text: <|startoftext|>Can you explain what is Machine Learning?<|endoftext|>
  example_title: Machine Learning
- text: <|startoftext|>Do you know anything about virtue ethics?<|endoftext|>
  example_title: Ethics
- text: <|startoftext|>How can I make my girlfried happy?<|endoftext|>
  example_title: Advise
inference:
  parameters:
    repetition_penalty: 1.2
    temperature: 0.2
    top_k: 30
    top_p: 0.3
    max_length: 200
    length_penalty: 0.3
    early_stopping: true
---
# Aira-Instruct-124M

`Aira-Instruct-124M` is a instruction-tuned GPT-style model based on [GPT-2](https://huggingface.co/gpt2). The model was trained with a dataset composed of `prompt`, `completions`, generated via the [Self-Instruct](https://github.com/yizhongw/self-instruct) framework. `Aira-Instruct-124M` instruction-tuning was achieved via conditional text generation.

The dataset used to train this model combines the following sources of data: the [`synthetic-instruct-gptj-pairwise`](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise) dataset, the [`databricks_dolly_15k`](https://huggingface.co/datasets/HuggingFaceH4/databricks_dolly_15k) dataset, the [`instruction-dataset`](https://huggingface.co/datasets/HuggingFaceH4/instruction-dataset) dataset, and a subset of [Aira's](https://github.com/Nkluge-correa/Aira-EXPERT) fine-tuning dataset, focused on Q&A related to Ethics, AI, AI safety, and other related topics. The dataset is available in both Portuguese and English.

Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).

## Details

- **Size:** 124,441,344 parameters
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/fine-tuning-instruct-aira)
- **Language:** English
- **Number of Epochs:** 5
- **Batch size:** 32
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 0.19 KgCO2 (United States of America)
- **Total Energy Consumption:** 0.42 kWh

| Epoch|Training Loss|Validation Loss|
|---|---|---|
| 1 |1.076073|0.692127|
| 2 |0.680394|0.662053|
| 3 |0.622054|0.651161|
| 4 |0.577170|0.644864|
| 5 |0.541509|0.644677|

This repository has the notebook used to train this model.

## Usage

Two special tokens are used to mark the user side of the interaction and the model's response:

`<|startoftext|>`What is a language model?`<|endoftext|>`A language model is a probability distribution over a vocabulary.`<|endoftext|>`

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-Instruct-124M')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-Instruct-124M')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.eos_token, return_tensors="pt").to(device)

responses = aira.generate(**inputs,
	bos_token_id=tokenizer.bos_token_id,
	pad_token_id=tokenizer.pad_token_id,
	eos_token_id=tokenizer.eos_token_id,
	do_sample=True,
	top_k=50,
	max_length=200,
	top_p=0.95,
	temperature=0.7,
	num_return_sequences=2)

print(f"Question: 👤 {question}\n")

for i, response in  enumerate(responses):
	print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```

The model will output something like:

```markdown
>>> Question: 👤 Hello! What is your name?

>>>Response 1: 🤖 Hi there! I am Aira, a chatbot designed to answer questions about AI ethics and AI safety. If you need assistance navigating our conversation, please feel free to ask!
>>>Response 2: 🤖 Hi there! My name is Aira, and I'm a chatbot designed to answer questions related to AI ethics and AI Safety. If you need assistance, feel free to ask, and I'll be happy to help you out.
```

## Limitations

🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.

🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.

## Cite as 🤗

```latex

@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://huggingface.co/nicholasKluge/Aira-Instruct-124M},
  author = {Nicholas Kluge Corrêa and Carolina Del Pino},
  title = {Aira},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
}

```

## License

The `Aira-Instruct-124M` is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.