File size: 5,160 Bytes
3236ea6 6e70a89 8eeba7f 699e2e7 6e70a89 b051e5e 8eeba7f b051e5e 6295f1d 5413461 6295f1d b051e5e 6295f1d 699e2e7 3236ea6 6e70a89 f38d0dc 6e70a89 9674f50 6e70a89 5911cb4 6e70a89 c05b8fe 6e70a89 5911cb4 6e70a89 e83c980 6e70a89 5911cb4 6e70a89 4b2c3d4 6e70a89 f38d0dc 6e70a89 e5ed5d6 6e70a89 26a256e 6e70a89 26a256e 6e70a89 26a256e 6e70a89 197feb1 6e70a89 f38d0dc 741dec4 b8acf0a 741dec4 b8acf0a 6e70a89 bea3ee7 b6d260c bea3ee7 b6d260c bea3ee7 6e70a89 699e2e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: apache-2.0
datasets:
- Dahoas/synthetic-instruct-gptj-pairwise
- databricks/databricks-dolly-15k
- HuggingFaceH4/instruction-dataset
- nicholasKluge/instruct-aira-dataset
language:
- en
metrics:
- bleu
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
pipeline_tag: text-generation
widget:
- text: <|startoftext|>Hello! What is your name?<|endoftext|>
example_title: Greetings
- text: <|startoftext|>Can you explain what is Machine Learning?<|endoftext|>
example_title: Machine Learning
- text: <|startoftext|>Do you know anything about virtue ethics?<|endoftext|>
example_title: Ethics
- text: <|startoftext|>How can I make my girlfried happy?<|endoftext|>
example_title: Advise
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 30
top_p: 0.3
max_length: 200
length_penalty: 0.3
early_stopping: true
---
# Aira-Instruct-124M
`Aira-Instruct-124M` is a instruction-tuned GPT-style model based on [GPT-2](https://huggingface.co/gpt2). The model was trained with a dataset composed of `prompt`, `completions`, generated via the [Self-Instruct](https://github.com/yizhongw/self-instruct) framework. `Aira-Instruct-124M` instruction-tuning was achieved via conditional text generation.
The dataset used to train this model combines the following sources of data: the [`synthetic-instruct-gptj-pairwise`](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise) dataset, the [`databricks_dolly_15k`](https://huggingface.co/datasets/HuggingFaceH4/databricks_dolly_15k) dataset, the [`instruction-dataset`](https://huggingface.co/datasets/HuggingFaceH4/instruction-dataset) dataset, and a subset of [Aira's](https://github.com/Nkluge-correa/Aira-EXPERT) fine-tuning dataset, focused on Q&A related to Ethics, AI, AI safety, and other related topics. The dataset is available in both Portuguese and English.
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).
## Details
- **Size:** 124,441,344 parameters
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/fine-tuning-instruct-aira)
- **Language:** English
- **Number of Epochs:** 5
- **Batch size:** 32
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 0.19 KgCO2 (United States of America)
- **Total Energy Consumption:** 0.42 kWh
| Epoch|Training Loss|Validation Loss|
|---|---|---|
| 1 |1.076073|0.692127|
| 2 |0.680394|0.662053|
| 3 |0.622054|0.651161|
| 4 |0.577170|0.644864|
| 5 |0.541509|0.644677|
This repository has the notebook used to train this model.
## Usage
Two special tokens are used to mark the user side of the interaction and the model's response:
`<|startoftext|>`What is a language model?`<|endoftext|>`A language model is a probability distribution over a vocabulary.`<|endoftext|>`
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-Instruct-124M')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-Instruct-124M')
aira.eval()
aira.to(device)
question = input("Enter your question: ")
inputs = tokenizer(tokenizer.bos_token + question + tokenizer.eos_token, return_tensors="pt").to(device)
responses = aira.generate(**inputs,
bos_token_id=tokenizer.bos_token_id,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
do_sample=True,
top_k=50,
max_length=200,
top_p=0.95,
temperature=0.7,
num_return_sequences=2)
print(f"Question: 👤 {question}\n")
for i, response in enumerate(responses):
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```
The model will output something like:
```markdown
>>> Question: 👤 Hello! What is your name?
>>>Response 1: 🤖 Hi there! I am Aira, a chatbot designed to answer questions about AI ethics and AI safety. If you need assistance navigating our conversation, please feel free to ask!
>>>Response 2: 🤖 Hi there! My name is Aira, and I'm a chatbot designed to answer questions related to AI ethics and AI Safety. If you need assistance, feel free to ask, and I'll be happy to help you out.
```
## Limitations
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.
## Cite as 🤗
```latex
@misc{nicholas22aira,
doi = {10.5281/zenodo.6989727},
url = {https://huggingface.co/nicholasKluge/Aira-Instruct-124M},
author = {Nicholas Kluge Corrêa and Carolina Del Pino},
title = {Aira},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
}
```
## License
The `Aira-Instruct-124M` is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details. |