--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: accuracy: 0.93148 - name: F1 type: f1 value: f1: 0.9314719475700824 --- # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2799 - Accuracy: {'accuracy': 0.93148} - F1: {'f1': 0.9314719475700824} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------------------:|:--------------------------:| | 0.2376 | 1.0 | 1563 | 0.2966 | {'accuracy': 0.8966} | {'f1': 0.8959598583205258} | | 0.1671 | 2.0 | 3126 | 0.2331 | {'accuracy': 0.92996} | {'f1': 0.9299430382567873} | | 0.0993 | 3.0 | 4689 | 0.2799 | {'accuracy': 0.93148} | {'f1': 0.9314719475700824} | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1