--- library_name: transformers tags: - text-summarization - text-generation - clinical-report-summarization - document-summarization license: mit language: - en - fr - pt - es metrics: - bertscore - rouge base_model: - Qwen/Qwen2.5-0.5B-Instruct pipeline_tag: text-generation --- # Model Details This model represent a fine-tuned version of `Qwen/Qwen2.5-0.5B-Instruct` on [MultiClinSum](https://zenodo.org/records/15463353) training data for [BioASQ-2025](http://bioasq.org/) Workshop / [CLEF 2025](https://clef2025.clef-initiative.eu/). ### Model Description - **Model type:** Decoder-based Model - **Language(s) (NLP):** Supported by Qwen2.5 + fine-tuned on summarries written in `en`, `fr`, `pt`, `es` - **License:** MIT - **Finetuned from model [optional]:** https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct ### Model Sources [optional] [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1TXGaz39o73nBucEQw12gbad7Tw11j2Ol?usp=sharing) - **Repository:** https://github.com/nicolay-r/distil-tuning-llm - **Paper:** **TBA** - **Demo:** https://colab.research.google.com/drive/1TXGaz39o73nBucEQw12gbad7Tw11j2Ol?usp=sharing ## Usage We use [bulk-chain](https://github.com/nicolay-r/bulk-chain) for inference with the Qwen2 provider based on `transformers` **pipelines API**. **Provider** `huggingface_qwen.py`: https://github.com/nicolay-r/nlp-thirdgate/blob/9e46629792e9a53871710884f7b9e2fe42666aa7/llm/transformers_qwen2.py ```python from bulk_chain.api import iter_content from bulk_chain.core.utils import dynamic_init content_it = iter_content( schema={"schema": [ {"prompt": "Summarize: {input}", "out": "summary"}] }, llm=dynamic_init( class_filepath="huggingface_qwen.py", class_name="Qwen2")( api_token="YOUR_HF_API_KEY_GOES_HERE", model_name="nicolay-r/qwen25-05b-multiclinsum-standard", temp=0.1, use_bf16=True, max_new_tokens=args.max_tokens, device=args.device ), infer_mode="batch", batch_size=4, return_mode="record", # INPUT TEXTS: input_dicts_it=[ {"input": "A patient 62 years old with ..."} ], ) for record in content_it: # here is the result dictionary that includes summary. print(record["summary"]) ``` ## Training Details ### Training Data * **MultiClinSum** * We use the [following script](https://github.com/nicolay-r/distill-tuning-llm/blob/main/resources/download_dataset.sh) for downloading datasets. * **Web**: https://temu.bsc.es/multiclinsum * **Data**: https://zenodo.org/records/15463353 * **BioASQ**: http://bioasq.org/ ### Training Procedure The training procedure involves: 1. Preparation of the `rationale` for summaries distillation. 2. Launch of the **fine-tuning** process. **Fine-tuning:** Please follow this script for using [`MultiClinSum` dataset](https://zenodo.org/records/15463353) for fine-tuning at GoogleColab A100 (40GB VRAM) + 80GB RAM: * https://github.com/nicolay-r/distil-tuning-llm/blob/master/distil_ft_qwen25_05b_A100-40GB_80GB_std.sh #### Preprocessing [optional] Refer to the following script for the `fine-tuning` pre-processing: * https://github.com/nicolay-r/distil-tuning-llm/blob/master/resources/make_dataset_mult.py #### Training Hyperparameters We refer to the original parameters here: * https://github.com/QwenLM/Qwen2.5-VL/tree/main/qwen-vl-finetune And use the following script: * https://github.com/nicolay-r/distil-tuning-llm/blob/master/distil_ft_qwen25_05b_A100-40GB_80GB_std.sh #### Speeds, Sizes, Times [optional] The fine-tuning procedure for `3` epochs takes around `~1 hour` using the GoogleColab A100. ## Evaluation #### Testing Data We use evaluation split of the 20 documents out of the small portion the available training data across all the languages: `en`, `fr`, `pt`, `es` #### Metrics In this evaluation we use onle `rouge` score. ### Results We launch 3 individual fine-tuning processes for `distil` and `standard` versions to showcase results variation among multiple runs. > **Figure**: the obtained results for this model correspond to the `standard` version 🟠 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/6wZ_klTgm-SmvZCGJOaC5.png) #### Summary #### Hardware We experiment with model inference and launching using GoolgeColab Notebook service and related resources: * Fine-tuning: A100 (40GB) * Inference: T4 (16GB) Follow the Google Codalab Notebook at the repository: * https://github.com/nicolay-r/distil-tuning-llm #### Software This is an official repository for this card: * https://github.com/nicolay-r/distil-tuning-llm ## Citation [optional] **BibTeX:** > **TO BE ADDED** ## Model Card Authors Nicolay Rusnachenko