--- datasets: - nvidia/OpenCodeReasoning-2 - GetSoloTech/Code-Reasoning base_model: GetSoloTech/GPT-OSS-Code-Reasoning-20B library_name: mlx tags: - code-reasoning - coding - reasoning - problem-solving - algorithms - python - c++ - competitive-programming - vllm - mlx pipeline_tag: text-generation --- # GPT-OSS-Code-Reasoning-20B-qx86-hi-mlx This model [GPT-OSS-Code-Reasoning-20B-qx86-hi-mlx](https://huggingface.co/GPT-OSS-Code-Reasoning-20B-qx86-hi-mlx) was converted to MLX format from [GetSoloTech/GPT-OSS-Code-Reasoning-20B](https://huggingface.co/GetSoloTech/GPT-OSS-Code-Reasoning-20B) using mlx-lm version **0.26.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("GPT-OSS-Code-Reasoning-20B-qx86-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```