--- license: apache-2.0 tags: - bias-detection - news-analysis - media-bias - journalism - content-analysis - mlx language: - en pipeline_tag: text-generation base_model: EmergentMethods/Qwen3-4B-BiasExpert library_name: mlx --- # Qwen3-4B-BiasExpert-dwq6-mlx find and address bias in your code This model [Qwen3-4B-BiasExpert-dwq6-mlx](https://huggingface.co/Qwen3-4B-BiasExpert-dwq6-mlx) was converted to MLX format from [EmergentMethods/Qwen3-4B-BiasExpert](https://huggingface.co/EmergentMethods/Qwen3-4B-BiasExpert) using mlx-lm version **0.26.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Qwen3-4B-BiasExpert-dwq6-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```