--- license: apache-2.0 base_model: DavidAU/Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-128k-ctx language: - en pipeline_tag: text-generation tags: - merge - programming - code generation - code - coding - coder - chat - brainstorm - qwen - qwen3 - qwencoder - brainstorm20x - esper - esper-3 - valiant - valiant-labs - qwen-3 - qwen-3-14b - 14b - reasoning - code-instruct - python - javascript - dev-ops - jenkins - terraform - scripting - powershell - azure - aws - gcp - cloud - problem-solving - architect - engineer - developer - creative - analytical - expert - rationality - conversational - instruct - float32 - mlx datasets: - sequelbox/Titanium2.1-DeepSeek-R1 - sequelbox/Tachibana2-DeepSeek-R1 - sequelbox/Raiden-DeepSeek-R1 library_name: mlx --- # Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-128k-ctx-q6-mlx This model [Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-128k-ctx-q6-mlx](https://huggingface.co/Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-128k-ctx-q6-mlx) was converted to MLX format from [DavidAU/Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-128k-ctx](https://huggingface.co/DavidAU/Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-128k-ctx) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Qwen3-Esper3-Reasoning-CODER-Instruct-21B-Brainstorm20x-128k-ctx-q6-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```