Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,108 +1,113 @@
|
|
1 |
-
#
|
2 |
|
3 |
-
|
4 |
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
- [GitHub Repository](https://github.com/nikoloside/TEBP)
|
8 |
-
- [Project Page](https://nikoloside.graphics/deepfracture/)
|
9 |
|
10 |
-
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
-
|
18 |
-
-
|
19 |
-
-
|
|
|
20 |
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
βββ pot/ # Pot object model
|
27 |
-
βββ squirrel/ # Squirrel object model
|
28 |
-
βββ bunny/ # Bunny object model
|
29 |
-
βββ lion/ # Lion object model
|
30 |
-
βββ README.md # This file
|
31 |
-
```
|
32 |
|
33 |
-
|
34 |
-
- `{shape}.obj` - Reference original 3D mesh file
|
35 |
-
- `{shape}-encoder.pt` - Encoder weights
|
36 |
-
- `{shape}-decoder.pt` - Decoder weights
|
37 |
-
- `{shape}-1000-encoder.pt` - Encoder weights (1000 epoch version)
|
38 |
-
- `{shape}-1000-decoder.pt` - Decoder weights (1000 epoch version)
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
import torch
|
46 |
-
from your_model_architecture import Encoder, Decoder
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
encoder.eval()
|
52 |
|
53 |
-
|
54 |
-
decoder = Decoder()
|
55 |
-
decoder.load_state_dict(torch.load('base/base-decoder.pt'))
|
56 |
-
decoder.eval()
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
reference_mesh = trimesh.load('base/base.obj')
|
61 |
-
```
|
62 |
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
[Details](https://github.com/nikoloside/TEBP/blob/main/04.Run-time/MorphoImageJ.py#L34)
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
-
|
73 |
-
with torch.no_grad():
|
74 |
-
latent = encoder(input_conditions)
|
75 |
-
|
76 |
-
# Decode
|
77 |
-
deformed_geometry = decoder(latent)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
|
85 |
-
|
86 |
|
87 |
-
|
88 |
-
|-------|------------------|-------------------|----------------|
|
89 |
-
| base | 277 | 94.2% | ~5ms |
|
90 |
-
| pot | 433 | 91.8% | ~6ms |
|
91 |
-
| squirrel | [TBD] | [TBD] | [TBD] |
|
92 |
-
| bunny | [TBD] | [TBD] | [TBD] |
|
93 |
-
| lion | [TBD] | [TBD] | [TBD] |
|
94 |
|
95 |
-
|
|
|
|
|
|
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
- **Dataset**: Break4Model dataset
|
98 |
- **Framework**: PyTorch
|
99 |
- **Optimizer**: Adam
|
100 |
- **Loss Function**: L2 Loss
|
101 |
- **Training Time**: ~24 hours per model on NVIDIA RTX 3090
|
102 |
|
103 |
-
##
|
|
|
|
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
```bibtex
|
108 |
@article{huang2025deepfracture,
|
@@ -118,10 +123,10 @@ eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.70002}
|
|
118 |
}
|
119 |
```
|
120 |
|
121 |
-
##
|
122 |
|
123 |
-
|
124 |
|
125 |
-
## Contact
|
126 |
|
127 |
-
|
|
|
1 |
+
# Model Card for DeepFracture
|
2 |
|
3 |
+
## Model Description
|
4 |
|
5 |
+
- **Model type**: 3D Fracture Pattern Prediction via impulse-code conditional VQ-VAE models
|
6 |
+
- **Language(s)**: Python
|
7 |
+
- **License**: Apache-2.0
|
8 |
+
- **Finetuned from model**: Custom architecture
|
9 |
|
10 |
+
### Model Sources
|
|
|
|
|
11 |
|
12 |
+
- **Repository**: https://github.com/nikoloside/TEBP
|
13 |
+
- **Paper**: https://doi.org/10.1111/cgf.70002
|
14 |
+
- **Demo**: [WIP]
|
15 |
|
16 |
+
## Uses
|
17 |
|
18 |
+
### Direct Use
|
19 |
|
20 |
+
These models are designed for:
|
21 |
+
- Computer graphics applications
|
22 |
+
- Game development
|
23 |
+
- Virtual reality environments
|
24 |
+
- Paper code release
|
25 |
|
26 |
+
### Out-of-Scope Use
|
27 |
|
28 |
+
- Medical applications
|
29 |
+
- Safety-critical systems
|
30 |
+
- High-precision engineering simulations
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
## Bias, Risks, and Limitations
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
### Bias
|
35 |
|
36 |
+
The models are trained on synthetic simulation data and may not generalize well to real-world scenarios with different material properties or environmental conditions.
|
37 |
|
38 |
+
### Risks
|
|
|
|
|
39 |
|
40 |
+
- Models may produce unrealistic deformations under extreme conditions
|
41 |
+
- Performance may significantly different from training data
|
42 |
+
- No guarantees for physical accuracy in safety-critical applications
|
|
|
43 |
|
44 |
+
### Limitations
|
|
|
|
|
|
|
45 |
|
46 |
+
- Limited to the specific one target shape and object categories in the training dataset
|
47 |
+
- Be able to reach real-time inference in network, but need resconstruction within 2-10 seconds
|
|
|
|
|
48 |
|
49 |
+
## Training Details
|
50 |
|
51 |
+
### Training Data
|
|
|
52 |
|
53 |
+
- **Dataset**: Break4Model dataset
|
54 |
+
- **Training samples**: Varies by model (277-433 samples per category)
|
55 |
+
- **Validation samples**: 20% of training data
|
56 |
+
- **Data preprocessing**: Normalized impact conditions and geometry of GS-SDF
|
57 |
|
58 |
+
### Training Procedure
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
- **Training regime**: Supervised learning
|
61 |
+
- **Optimizer**: Adam
|
62 |
+
- **Learning rate**: 1e-3 - 1e-5
|
63 |
+
- **Batch size**: 1
|
64 |
+
- **Training epochs**: 1000
|
65 |
+
- **Hardware**: NVIDIA RTX 3090 GPU
|
66 |
+
- **Training time**: ~24 hours per model
|
67 |
|
68 |
+
### Training Results
|
69 |
|
70 |
+
(metrics and performance)[https://doi.org/10.1111/cgf.70002]
|
71 |
|
72 |
+
## Evaluation
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
### Testing Data
|
75 |
+
|
76 |
+
- **Dataset**: Break4Models
|
77 |
+
- **Metrics**: Geometric accuracy, Fragment size, Inference time, Fragment distribution, Surface normals, MPCD (Multiple-Phase Charmfer Distance)
|
78 |
|
79 |
+
### Results
|
80 |
+
|
81 |
+
The models achieve high accuracy in predicting fracture patterns while maintaining nearly real-time performance suitable for interactive applications.
|
82 |
+
|
83 |
+
## Environmental Impact
|
84 |
+
|
85 |
+
- **Hardware Type**: GPU
|
86 |
+
- **Hours used**: ~24 hours per model
|
87 |
- **Dataset**: Break4Model dataset
|
88 |
- **Framework**: PyTorch
|
89 |
- **Optimizer**: Adam
|
90 |
- **Loss Function**: L2 Loss
|
91 |
- **Training Time**: ~24 hours per model on NVIDIA RTX 3090
|
92 |
|
93 |
+
## Technical Specifications
|
94 |
+
|
95 |
+
### Model Architecture
|
96 |
|
97 |
+
- **Encoder**: SIREN Layer
|
98 |
+
- **Decoder**: CNN
|
99 |
+
- **Parameters**: ~2M parameters per model
|
100 |
+
- **Input**: Impact conditions (position, velocity, impulse strength) from Bullet3
|
101 |
+
- **Output**: GS-SDF (Geometrically-Segmented Signed Distance Fields)
|
102 |
+
|
103 |
+
### Compute Requirements
|
104 |
+
|
105 |
+
- **Training**: NVIDIA RTX 3090 or equivalent
|
106 |
+
- **Inference**: CPU or GPU
|
107 |
+
- **Memory**: 8GB RAM minimum
|
108 |
+
- **Storage**: ~200MB per model
|
109 |
+
|
110 |
+
## Citation
|
111 |
|
112 |
```bibtex
|
113 |
@article{huang2025deepfracture,
|
|
|
123 |
}
|
124 |
```
|
125 |
|
126 |
+
## Data Card Authors
|
127 |
|
128 |
+
Huang Niko(nikoloside), Fang Chaowei(fangsunjian)
|
129 |
|
130 |
+
## Data Card Contact
|
131 |
|
132 |
+
https://github.com/nikoloside/TEBP
|