niratpatel commited on
Commit
449f171
·
verified ·
1 Parent(s): 4e991fd

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 269.05 +/- 38.24
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79e1ef267ec0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79e1ef267f60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79e1ef26c040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79e1ef26c0e0>", "_build": "<function ActorCriticPolicy._build at 0x79e1ef26c180>", "forward": "<function ActorCriticPolicy.forward at 0x79e1ef26c220>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79e1ef26c2c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79e1ef26c360>", "_predict": "<function ActorCriticPolicy._predict at 0x79e1ef26c400>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79e1ef26c4a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79e1ef26c540>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79e1ef26c5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79e1ef3e02c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1745409731296907175, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACa5JG91x1eu8gJYj3kvTU9Or5HPBVeeb0AAIA/AACAP+0JFL6ucZy6O4MjPsJs8DzPJTm9cgQYPgAAgD8AAIA/Gv0NPtBwiT/4MZs+AR4xvwW9KT4QYfI9AAAAAAAAAADNMKe7lr6zP8TwIr5OFQC+PFg0t7Z7Nb0AAAAAAAAAAHp3ij5iFnQ+gt8nvr8a075Ee6E9FfO9vQAAAAAAAAAAmqfQvY8Oerr+aY61zLGQsAzcWLmLtLk0AACAPwAAAACmkjE+TkiVvJJ3DjveImC5y8kDvqEOQLoAAIA/AACAP8Cwlb2uJ/K4rjvJuYKtd7Uac+E7ZQTwOAAAAAAAAAAA2h85PsPLYLz6JzG7XCNGOaf6y71guFw6AACAPwAAgD8AEom9rqWeusiOKjOwdi+wpZ7MuvsfzrMAAAAAAACAP4CMrL0ptGK68zLWusIuBLbqQwA7cCT4OQAAAAAAAIA/phEbPhCP4z6Y6I49T2nTvi90Bz7QseK8AAAAAAAAAACAWUs99ngkukj7ELzy8D8114d5u6tDrLQAAIA/AACAP7MCHj72yDq8OJ4GPQGMhLti/KS9C+5ZvAAAgD8AAIA/zVI7vXENPLk6Ybs9E3NSMnVwxbkL/o+yAAAAAAAAgD/GBt0+H0JOPyeAtj1uyBG/PAu3PiIN4b0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7ac0+C9RKMAWyUS+GMAXSUR0Ce9IL876pHdX2UKGgGR0BvIrNr0rbyaAdLxGgIR0Ce9JdnTRYzdX2UKGgGR0BxqvIhhYvGaAdLuGgIR0Ce9J9XcQAddX2UKGgGR0BydMD+zdDZaAdLtGgIR0Ce9Nmz0HyFdX2UKGgGR0Byq7uWrwOOaAdL8mgIR0Ce9OwbVBlddX2UKGgGR0ByrZvbXYlIaAdNBwFoCEdAnvUl0Lc9GXV9lChoBkdAccypyp71I2gHS+loCEdAnvVQVO9FnnV9lChoBkdAcAKm9QGfPGgHS7xoCEdAnvWERODaoXV9lChoBkdAcOPER8MNMGgHS9RoCEdAnvYoFaB7NXV9lChoBkdAcOxJC0F8omgHS85oCEdAnvbGjO9nLHV9lChoBkdAcRUF6AvtdGgHS9VoCEdAnvbOJk5IYnV9lChoBkdActTZDArQPmgHS9xoCEdAnvcgrMC9y3V9lChoBkdAcfj8xbjcVWgHS+JoCEdAnve4HcDbJ3V9lChoBkdAcSmAU+LWJGgHS7doCEdAnvfdHYpUgnV9lChoBkdAcJtHQhOgx2gHS7loCEdAnvjZdOZb6nV9lChoBkdAbp/WYnfEXWgHS8BoCEdAnvkTyWiUPnV9lChoBkdAbswZiuuA7WgHS7loCEdAnvk5XdTHbXV9lChoBkdAcF6zBhx5s2gHS9BoCEdAnvldxZMcqHV9lChoBkdAclDl9Sde6mgHS8poCEdAnvmQAp8WsXV9lChoBkdAb/Ux33YcvWgHS85oCEdAnvn01Q66rnV9lChoBkdAYyehnrY5DWgHTegDaAhHQJ76RT6zmfZ1fZQoaAZHQG7UCy6cy31oB0uuaAhHQJ76T+FUQ051fZQoaAZHQHMhcLWqcVhoB00DAWgIR0Ce+49VWCEpdX2UKGgGR0BxNyASWZ7YaAdLzWgIR0Ce+5uNPxhEdX2UKGgGR0Bw4xfrrxAjaAdLzGgIR0Ce+/C9RJmNdX2UKGgGR0BvF9r433pOaAdLwWgIR0Ce/KcFhXr/dX2UKGgGR0BzOSUxEfDDaAdL2GgIR0Ce/S8aXKKYdX2UKGgGR0Bw5P0WdmQKaAdLsmgIR0Ce/bZqmCRPdX2UKGgGR0Bu4DoMa0hNaAdLr2gIR0Ce/fYoiLVGdX2UKGgGR0BwfY14xDb8aAdLyWgIR0Ce/qKAavRrdX2UKGgGR0BxgxKoQ4CIaAdL42gIR0Ce/wVEd/8VdX2UKGgGR0Bwwu7PIGQkaAdLxGgIR0Ce/9qkuYhMdX2UKGgGR0Byca3+dbxFaAdL5mgIR0CfAIyIYWLxdX2UKGgGR0ByES7EpAlfaAdNEgFoCEdAnwF2wRoRI3V9lChoBkdAcoN3C9AX22gHTQgBaAhHQJ8COR1X/5t1fZQoaAZHQG8Gi0OVgQZoB0vRaAhHQJ8C6pwS8J51fZQoaAZHQHNjjmbLEDRoB0vwaAhHQJ8DirlvIfd1fZQoaAZHQHDlAAuIyj5oB0vDaAhHQJ8D0fMfRu11fZQoaAZHQHOTFloUSIxoB0v6aAhHQJ8D+so2GZh1fZQoaAZHQHG5Fqi48U5oB0vgaAhHQJ8EV+DvmYB1fZQoaAZHQHKywob4rSVoB0vIaAhHQJ8E4upS75F1fZQoaAZHQHG0Gi1y/9JoB0vZaAhHQJ8FF8ohIOJ1fZQoaAZHQG48Oyu6mO5oB0vFaAhHQJ8FS+PBBRh1fZQoaAZHQHElGwqy4WloB0u3aAhHQJ8GX5oGpuN1fZQoaAZHQHIdAmReTmpoB0vmaAhHQJ8GWo3rD651fZQoaAZHQHL7GxUvPC5oB0vcaAhHQJ8GxJnQID51fZQoaAZHQHDjEFKTSstoB0vHaAhHQJ8Hbvttygh1fZQoaAZHQHDpXjuKGcpoB0vJaAhHQJ8IAeOn2qV1fZQoaAZHQHD4548lolFoB0uwaAhHQJ8IiZfD1oR1fZQoaAZHQHIWl/tpmEpoB0u6aAhHQJ8JAiml67d1fZQoaAZHQHGnkgwGnoBoB0vkaAhHQJ8JKij+Jgt1fZQoaAZHQHBtAeFL39JoB0vVaAhHQJ8JZreqJdl1fZQoaAZHQHCcqF7D2rZoB0vlaAhHQJ8Jov4/NaB1fZQoaAZHQGIyGxdIGyJoB03oA2gIR0CfCeqCHymRdX2UKGgGR0Bx4C7sfJV9aAdL6mgIR0CfCr3Sa3I/dX2UKGgGR0Bxhc6mwaBJaAdL/2gIR0CfC7vUBnzydX2UKGgGR0Byq1UzbeuWaAdL12gIR0CfC91Gsmv4dX2UKGgGR0Bwong/C66KaAdL2mgIR0CfC/Y4ACGOdX2UKGgGR0BzLOS7oSteaAdLzWgIR0CfDAUxmCiAdX2UKGgGR0BxqODlHSWraAdLqmgIR0CfDGI1tO2zdX2UKGgGR0BxA04zabnYaAdL52gIR0CfDUgW8AaOdX2UKGgGR0Bx83rgOz6aaAdLx2gIR0CfDY3NcGC7dX2UKGgGR0BzQeoVEd/8aAdNVgFoCEdAnw2aJZW7v3V9lChoBkdAbsKnE2pAEGgHS7poCEdAnw2spw0fo3V9lChoBkdAcsym+TNdJWgHS8doCEdAnw6+xB3RonV9lChoBkdAcMGfsNUfgmgHS9hoCEdAnw7z5GjKxXV9lChoBkdAceBglWwNb2gHS+5oCEdAnw8RDohY/3V9lChoBkdAcn4KF7D2rWgHS8hoCEdAnw+Q5myxA3V9lChoBkdAZdkwqy4WlGgHTegDaAhHQJ8P9r1uivh1fZQoaAZHQHEu0dq+JxhoB0vAaAhHQJ8QbAgxJul1fZQoaAZHQHONaNlyzX1oB0vtaAhHQJ8RP4ZdfLN1fZQoaAZHQHMcm7nPmgdoB0vtaAhHQJ8RXYao/A11fZQoaAZHQGSSzEBKcutoB03oA2gIR0CfEW7rLQokdX2UKGgGR0BxOkmUnogWaAdLv2gIR0CfEaf0mMOxdX2UKGgGR0Bx31VtGd7OaAdLtGgIR0CfEcE6DGtIdX2UKGgGR0ByRZ+CsfaIaAdL8GgIR0CfEd495hScdX2UKGgGR0ByM4K5TZQIaAdLxWgIR0CfEgLZi/fwdX2UKGgGR0BwyXcYZVGTaAdL32gIR0CfEnwBo24vdX2UKGgGR0BwMibmU4aQaAdLuGgIR0CfEt4Ia99MdX2UKGgGR0BxSJXgccU/aAdLy2gIR0CfEy0wJw85dX2UKGgGR0Bxoc4KhL5AaAdLumgIR0CfE4Z2pyZKdX2UKGgGR0Bv3xnJ1aGIaAdLwGgIR0CfFALQ5WBCdX2UKGgGR0BubBmNBF/haAdLxmgIR0CfFYVBD5TIdX2UKGgGR0Bwo6HXVbzLaAdLxmgIR0CfFaUUfxMGdX2UKGgGR0Bx0DoJRfnfaAdNLAFoCEdAnxWhfjS5RXV9lChoBkdAb5Ieg+Qlr2gHS7hoCEdAnxXEdFOO83V9lChoBkdAchV7laKUFGgHS/1oCEdAnxX1aOgg5nV9lChoBkdAcPgCngpBomgHS9JoCEdAnxX7C79Q43V9lChoBkdAcjLLux8lX2gHS9ZoCEdAnxaAeii7CnV9lChoBkdAcvOh5gPVeGgHS+ZoCEdAnxaaSHM2WXV9lChoBkdAcHIDBdld1WgHS+RoCEdAnxbws9SuQ3V9lChoBkdAcPBQ4jrzG2gHS85oCEdAnxb8guAZsXV9lChoBkdAcEWML4N7SmgHS9hoCEdAnxebDZUT+XV9lChoBkdAcQ81pCa7VmgHS8VoCEdAnxfVK9PDYXV9lChoBkdAcU93OfNA1WgHS91oCEdAnxf46XBxgnV9lChoBkdAc5y4//vOQmgHS95oCEdAnxjLyDqW1XV9lChoBkdAboJKbKA8S2gHS7doCEdAnxlo7q6e5HV9lChoBkdAbogNNrTH82gHS7loCEdAnxl5N47ihnV9lChoBkdAcC8swL3K0WgHS9ZoCEdAnxpqxLTQV3V9lChoBkdAcfg2pQ1rI2gHS95oCEdAnxtDOcDr7nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:911e9d0f4792cb8350c81db13a94fdcbd86d91f7e877ba79f0cc3253229be797
3
+ size 148015
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79e1ef267ec0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79e1ef267f60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79e1ef26c040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79e1ef26c0e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79e1ef26c180>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79e1ef26c220>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79e1ef26c2c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79e1ef26c360>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79e1ef26c400>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79e1ef26c4a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79e1ef26c540>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79e1ef26c5e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79e1ef3e02c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1745409731296907175,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACa5JG91x1eu8gJYj3kvTU9Or5HPBVeeb0AAIA/AACAP+0JFL6ucZy6O4MjPsJs8DzPJTm9cgQYPgAAgD8AAIA/Gv0NPtBwiT/4MZs+AR4xvwW9KT4QYfI9AAAAAAAAAADNMKe7lr6zP8TwIr5OFQC+PFg0t7Z7Nb0AAAAAAAAAAHp3ij5iFnQ+gt8nvr8a075Ee6E9FfO9vQAAAAAAAAAAmqfQvY8Oerr+aY61zLGQsAzcWLmLtLk0AACAPwAAAACmkjE+TkiVvJJ3DjveImC5y8kDvqEOQLoAAIA/AACAP8Cwlb2uJ/K4rjvJuYKtd7Uac+E7ZQTwOAAAAAAAAAAA2h85PsPLYLz6JzG7XCNGOaf6y71guFw6AACAPwAAgD8AEom9rqWeusiOKjOwdi+wpZ7MuvsfzrMAAAAAAACAP4CMrL0ptGK68zLWusIuBLbqQwA7cCT4OQAAAAAAAIA/phEbPhCP4z6Y6I49T2nTvi90Bz7QseK8AAAAAAAAAACAWUs99ngkukj7ELzy8D8114d5u6tDrLQAAIA/AACAP7MCHj72yDq8OJ4GPQGMhLti/KS9C+5ZvAAAgD8AAIA/zVI7vXENPLk6Ybs9E3NSMnVwxbkL/o+yAAAAAAAAgD/GBt0+H0JOPyeAtj1uyBG/PAu3PiIN4b0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG7ac0+C9RKMAWyUS+GMAXSUR0Ce9IL876pHdX2UKGgGR0BvIrNr0rbyaAdLxGgIR0Ce9JdnTRYzdX2UKGgGR0BxqvIhhYvGaAdLuGgIR0Ce9J9XcQAddX2UKGgGR0BydMD+zdDZaAdLtGgIR0Ce9Nmz0HyFdX2UKGgGR0Byq7uWrwOOaAdL8mgIR0Ce9OwbVBlddX2UKGgGR0ByrZvbXYlIaAdNBwFoCEdAnvUl0Lc9GXV9lChoBkdAccypyp71I2gHS+loCEdAnvVQVO9FnnV9lChoBkdAcAKm9QGfPGgHS7xoCEdAnvWERODaoXV9lChoBkdAcOPER8MNMGgHS9RoCEdAnvYoFaB7NXV9lChoBkdAcOxJC0F8omgHS85oCEdAnvbGjO9nLHV9lChoBkdAcRUF6AvtdGgHS9VoCEdAnvbOJk5IYnV9lChoBkdActTZDArQPmgHS9xoCEdAnvcgrMC9y3V9lChoBkdAcfj8xbjcVWgHS+JoCEdAnve4HcDbJ3V9lChoBkdAcSmAU+LWJGgHS7doCEdAnvfdHYpUgnV9lChoBkdAcJtHQhOgx2gHS7loCEdAnvjZdOZb6nV9lChoBkdAbp/WYnfEXWgHS8BoCEdAnvkTyWiUPnV9lChoBkdAbswZiuuA7WgHS7loCEdAnvk5XdTHbXV9lChoBkdAcF6zBhx5s2gHS9BoCEdAnvldxZMcqHV9lChoBkdAclDl9Sde6mgHS8poCEdAnvmQAp8WsXV9lChoBkdAb/Ux33YcvWgHS85oCEdAnvn01Q66rnV9lChoBkdAYyehnrY5DWgHTegDaAhHQJ76RT6zmfZ1fZQoaAZHQG7UCy6cy31oB0uuaAhHQJ76T+FUQ051fZQoaAZHQHMhcLWqcVhoB00DAWgIR0Ce+49VWCEpdX2UKGgGR0BxNyASWZ7YaAdLzWgIR0Ce+5uNPxhEdX2UKGgGR0Bw4xfrrxAjaAdLzGgIR0Ce+/C9RJmNdX2UKGgGR0BvF9r433pOaAdLwWgIR0Ce/KcFhXr/dX2UKGgGR0BzOSUxEfDDaAdL2GgIR0Ce/S8aXKKYdX2UKGgGR0Bw5P0WdmQKaAdLsmgIR0Ce/bZqmCRPdX2UKGgGR0Bu4DoMa0hNaAdLr2gIR0Ce/fYoiLVGdX2UKGgGR0BwfY14xDb8aAdLyWgIR0Ce/qKAavRrdX2UKGgGR0BxgxKoQ4CIaAdL42gIR0Ce/wVEd/8VdX2UKGgGR0Bwwu7PIGQkaAdLxGgIR0Ce/9qkuYhMdX2UKGgGR0Byca3+dbxFaAdL5mgIR0CfAIyIYWLxdX2UKGgGR0ByES7EpAlfaAdNEgFoCEdAnwF2wRoRI3V9lChoBkdAcoN3C9AX22gHTQgBaAhHQJ8COR1X/5t1fZQoaAZHQG8Gi0OVgQZoB0vRaAhHQJ8C6pwS8J51fZQoaAZHQHNjjmbLEDRoB0vwaAhHQJ8DirlvIfd1fZQoaAZHQHDlAAuIyj5oB0vDaAhHQJ8D0fMfRu11fZQoaAZHQHOTFloUSIxoB0v6aAhHQJ8D+so2GZh1fZQoaAZHQHG5Fqi48U5oB0vgaAhHQJ8EV+DvmYB1fZQoaAZHQHKywob4rSVoB0vIaAhHQJ8E4upS75F1fZQoaAZHQHG0Gi1y/9JoB0vZaAhHQJ8FF8ohIOJ1fZQoaAZHQG48Oyu6mO5oB0vFaAhHQJ8FS+PBBRh1fZQoaAZHQHElGwqy4WloB0u3aAhHQJ8GX5oGpuN1fZQoaAZHQHIdAmReTmpoB0vmaAhHQJ8GWo3rD651fZQoaAZHQHL7GxUvPC5oB0vcaAhHQJ8GxJnQID51fZQoaAZHQHDjEFKTSstoB0vHaAhHQJ8Hbvttygh1fZQoaAZHQHDpXjuKGcpoB0vJaAhHQJ8IAeOn2qV1fZQoaAZHQHD4548lolFoB0uwaAhHQJ8IiZfD1oR1fZQoaAZHQHIWl/tpmEpoB0u6aAhHQJ8JAiml67d1fZQoaAZHQHGnkgwGnoBoB0vkaAhHQJ8JKij+Jgt1fZQoaAZHQHBtAeFL39JoB0vVaAhHQJ8JZreqJdl1fZQoaAZHQHCcqF7D2rZoB0vlaAhHQJ8Jov4/NaB1fZQoaAZHQGIyGxdIGyJoB03oA2gIR0CfCeqCHymRdX2UKGgGR0Bx4C7sfJV9aAdL6mgIR0CfCr3Sa3I/dX2UKGgGR0Bxhc6mwaBJaAdL/2gIR0CfC7vUBnzydX2UKGgGR0Byq1UzbeuWaAdL12gIR0CfC91Gsmv4dX2UKGgGR0Bwong/C66KaAdL2mgIR0CfC/Y4ACGOdX2UKGgGR0BzLOS7oSteaAdLzWgIR0CfDAUxmCiAdX2UKGgGR0BxqODlHSWraAdLqmgIR0CfDGI1tO2zdX2UKGgGR0BxA04zabnYaAdL52gIR0CfDUgW8AaOdX2UKGgGR0Bx83rgOz6aaAdLx2gIR0CfDY3NcGC7dX2UKGgGR0BzQeoVEd/8aAdNVgFoCEdAnw2aJZW7v3V9lChoBkdAbsKnE2pAEGgHS7poCEdAnw2spw0fo3V9lChoBkdAcsym+TNdJWgHS8doCEdAnw6+xB3RonV9lChoBkdAcMGfsNUfgmgHS9hoCEdAnw7z5GjKxXV9lChoBkdAceBglWwNb2gHS+5oCEdAnw8RDohY/3V9lChoBkdAcn4KF7D2rWgHS8hoCEdAnw+Q5myxA3V9lChoBkdAZdkwqy4WlGgHTegDaAhHQJ8P9r1uivh1fZQoaAZHQHEu0dq+JxhoB0vAaAhHQJ8QbAgxJul1fZQoaAZHQHONaNlyzX1oB0vtaAhHQJ8RP4ZdfLN1fZQoaAZHQHMcm7nPmgdoB0vtaAhHQJ8RXYao/A11fZQoaAZHQGSSzEBKcutoB03oA2gIR0CfEW7rLQokdX2UKGgGR0BxOkmUnogWaAdLv2gIR0CfEaf0mMOxdX2UKGgGR0Bx31VtGd7OaAdLtGgIR0CfEcE6DGtIdX2UKGgGR0ByRZ+CsfaIaAdL8GgIR0CfEd495hScdX2UKGgGR0ByM4K5TZQIaAdLxWgIR0CfEgLZi/fwdX2UKGgGR0BwyXcYZVGTaAdL32gIR0CfEnwBo24vdX2UKGgGR0BwMibmU4aQaAdLuGgIR0CfEt4Ia99MdX2UKGgGR0BxSJXgccU/aAdLy2gIR0CfEy0wJw85dX2UKGgGR0Bxoc4KhL5AaAdLumgIR0CfE4Z2pyZKdX2UKGgGR0Bv3xnJ1aGIaAdLwGgIR0CfFALQ5WBCdX2UKGgGR0BubBmNBF/haAdLxmgIR0CfFYVBD5TIdX2UKGgGR0Bwo6HXVbzLaAdLxmgIR0CfFaUUfxMGdX2UKGgGR0Bx0DoJRfnfaAdNLAFoCEdAnxWhfjS5RXV9lChoBkdAb5Ieg+Qlr2gHS7hoCEdAnxXEdFOO83V9lChoBkdAchV7laKUFGgHS/1oCEdAnxX1aOgg5nV9lChoBkdAcPgCngpBomgHS9JoCEdAnxX7C79Q43V9lChoBkdAcjLLux8lX2gHS9ZoCEdAnxaAeii7CnV9lChoBkdAcvOh5gPVeGgHS+ZoCEdAnxaaSHM2WXV9lChoBkdAcHIDBdld1WgHS+RoCEdAnxbws9SuQ3V9lChoBkdAcPBQ4jrzG2gHS85oCEdAnxb8guAZsXV9lChoBkdAcEWML4N7SmgHS9hoCEdAnxebDZUT+XV9lChoBkdAcQ81pCa7VmgHS8VoCEdAnxfVK9PDYXV9lChoBkdAcU93OfNA1WgHS91oCEdAnxf46XBxgnV9lChoBkdAc5y4//vOQmgHS95oCEdAnxjLyDqW1XV9lChoBkdAboJKbKA8S2gHS7doCEdAnxlo7q6e5HV9lChoBkdAbogNNrTH82gHS7loCEdAnxl5N47ihnV9lChoBkdAcC8swL3K0WgHS9ZoCEdAnxpqxLTQV3V9lChoBkdAcfg2pQ1rI2gHS95oCEdAnxtDOcDr7nVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 380,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6493c905c44a832c0332d4bb2b9b986b65af8c5575fe18efdaca5b2f785e062
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c78c7f6ff8935afeeb54485d8b951920ffb863b540f07ed0c98e646d601397f
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
2
+ - Python: 3.11.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.6.0+cu124
5
+ - GPU Enabled: True
6
+ - Numpy: 2.0.2
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b83e9c52a656cde9b49673fd5a9ddb629294702948d4d47de1b361033f63d7a2
3
+ size 155035
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.0502185, "std_reward": 38.23776669836184, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-04-23T12:39:33.615103"}