initial commit
Browse files- .gitattributes +1 -0
- README.md +266 -3
- config.json +26 -0
- generation_config.json +7 -0
- nixie-querygen-v3-f16.gguf +3 -0
- nixie-querygen-v3-q4.gguf +3 -0
- prompt_example.txt +8 -0
- pytorch_model-00001-of-00003.bin +3 -0
- pytorch_model-00002-of-00003.bin +3 -0
- pytorch_model-00003-of-00003.bin +3 -0
- pytorch_model.bin.index.json +298 -0
- special_tokens_map.json +24 -0
- tokenizer.model +3 -0
- tokenizer_config.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,266 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
library_name: peft
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
base_model: mistralai/Mistral-7B-v0.3
|
| 7 |
+
datasets:
|
| 8 |
+
- BeIR/nq
|
| 9 |
+
- embedding-data/PAQ_pairs
|
| 10 |
+
- sentence-transformers/msmarco-hard-negatives
|
| 11 |
+
- leminda-ai/s2orc_small
|
| 12 |
+
- lucadiliello/triviaqa
|
| 13 |
+
- pietrolesci/agnews
|
| 14 |
+
- mteb/amazon_reviews_multi
|
| 15 |
+
- multiIR/ccnews2016-8multi
|
| 16 |
+
- eli5
|
| 17 |
+
- gooaq
|
| 18 |
+
- quora
|
| 19 |
+
- lucadiliello/searchqa
|
| 20 |
+
- flax-sentence-embeddings/stackexchange_math_jsonl
|
| 21 |
+
- yahoo_answers_qa
|
| 22 |
+
- EdinburghNLP/xsum
|
| 23 |
+
- wikihow
|
| 24 |
+
- rajpurkar/squad_v2
|
| 25 |
+
- nixiesearch/amazon-esci
|
| 26 |
+
- osunlp/Mind2Web
|
| 27 |
+
- derek-thomas/dataset-creator-askreddit
|
| 28 |
+
language:
|
| 29 |
+
- en
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
# nixie-querygen-v3
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
A [Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) fine-tuned on query generation task. Main use cases:
|
| 36 |
+
|
| 37 |
+
* synthetic query generation for downstream embedding fine-tuning tasks - when you have only documents and no queries/labels. Such task can be done with the [nixietune](https://github.com/nixiesearch/nixietune) toolkit, see the `nixietune.qgen.generate` recipe.
|
| 38 |
+
* synthetic dataset expansion for further embedding training - when you DO have query-document pairs, but only a few. You can fine-tune the `nixie-querygen-v3` on existing pairs, and then expand your document corpus with synthetic queries (which are still based on your few real ones). See `nixietune.querygen` recipe.
|
| 39 |
+
|
| 40 |
+
The idea behind the approach is taken from the [doqT5query](https://github.com/castorini/docTTTTTquery) model. See the original paper [Rodrigo Nogueira and Jimmy Lin. From doc2query to docTTTTTquery.](https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf)
|
| 41 |
+
|
| 42 |
+
## Flavours
|
| 43 |
+
|
| 44 |
+
This repo has multiple versions of the model:
|
| 45 |
+
|
| 46 |
+
* model-*.safetensors: Pytorch FP16 checkpoint, suitable for down-stream fine-tuning
|
| 47 |
+
* *-f16.gguf: GGUF F16 non-quantized [llama-cpp](https://github.com/ggerganov/llama.cpp) checkpoint, for CPU inference
|
| 48 |
+
* *-q4.gguf: GGUF Q4_0 quantized [llama-cpp](https://github.com/ggerganov/llama.cpp) checkpoint, for fast (and less precise) CPU inference.
|
| 49 |
+
|
| 50 |
+
## Prompt formats
|
| 51 |
+
|
| 52 |
+
The model accepts the followinng Alpaca prompt format:
|
| 53 |
+
|
| 54 |
+
```
|
| 55 |
+
### Instruction:
|
| 56 |
+
Write a short query which can be used to search a given document:
|
| 57 |
+
|
| 58 |
+
### Input:
|
| 59 |
+
{document text}
|
| 60 |
+
|
| 61 |
+
### Response:
|
| 62 |
+
[short|medium|long]? [question|regular]? query:
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
Some notes on format:
|
| 66 |
+
|
| 67 |
+
* `[short|medium|long]` and `[question|regular]` fragments are optional and can be skipped.
|
| 68 |
+
|
| 69 |
+
## Inference example
|
| 70 |
+
|
| 71 |
+
### llamacpp
|
| 72 |
+
|
| 73 |
+
With [llama-cpp](https://github.com/ggerganov/llama.cpp) and Q4 model the inference can be done on a CPU:
|
| 74 |
+
|
| 75 |
+
```bash
|
| 76 |
+
$ cat input.txt
|
| 77 |
+
### Instruction:
|
| 78 |
+
Write a short query which can be used to search a given document:
|
| 79 |
+
|
| 80 |
+
### Input:
|
| 81 |
+
Google’s greenhouse gas emissions have surged 48 percent in the past five years due to the expansion of its data centers that underpin artificial intelligence systems, leaving its commitment to get to “net zero” by 2030 in doubt. The Silicon Valley company’s pollution amounted to 14.3 million tonnes of carbon equivalent in 2023, a 48 percent increase from its 2019 baseline and a 13 percent rise since last year, Google said in its annual environmental report on Tuesday. Google said the jump highlighted “the challenge of reducing emissions” at the same time as it invests in the build-out of large language models and their associated applications and infrastructure, admitting that “the future environmental impact of AI” was “complex and difficult to predict.”
|
| 82 |
+
|
| 83 |
+
### Response:
|
| 84 |
+
short query:
|
| 85 |
+
|
| 86 |
+
$ ./llama-cli -m ~/models/nixie-querygen-v3/nixie-querygen-v3-q4.gguf -f input.txt -s 1
|
| 87 |
+
|
| 88 |
+
system_info: n_threads = 16 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 0 |
|
| 89 |
+
sampling:
|
| 90 |
+
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
|
| 91 |
+
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
|
| 92 |
+
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
|
| 93 |
+
sampling order:
|
| 94 |
+
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature
|
| 95 |
+
generate: n_ctx = 32768, n_batch = 2048, n_predict = 128, n_keep = 1
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
### Instruction:
|
| 99 |
+
Write a short query which can be used to search a given document:
|
| 100 |
+
|
| 101 |
+
### Input:
|
| 102 |
+
Google’s greenhouse gas emissions have surged 48 percent in the past five years due to the expansion of its data centers that underpin artificial intelligence systems, leaving its commitment to get to “net zero” by 2030 in doubt.
|
| 103 |
+
The Silicon Valley company’s pollution amounted to 14.3 million tonnes of carbon equivalent in 2023, a 48 percent increase from its 2019 baseline and a 13 percent rise since last year, Google said in its annual environmental report on Tuesday.
|
| 104 |
+
Google said the jump highlighted “the challenge of reducing emissions” at the same time as it invests in the build-out of large language models and their associated applications and infrastructure, admitting that “the future environmental impact of AI” was “complex and difficult to predict.”
|
| 105 |
+
|
| 106 |
+
### Response:
|
| 107 |
+
short query: google carbon footprint [end of text]
|
| 108 |
+
|
| 109 |
+
llama_print_timings: load time = 4497.53 ms
|
| 110 |
+
llama_print_timings: sample time = 0.21 ms / 5 runs ( 0.04 ms per token, 23584.91 tokens per second)
|
| 111 |
+
llama_print_timings: prompt eval time = 4006.12 ms / 209 tokens ( 19.17 ms per token, 52.17 tokens per second)
|
| 112 |
+
llama_print_timings: eval time = 829.37 ms / 4 runs ( 207.34 ms per token, 4.82 tokens per second)
|
| 113 |
+
llama_print_timings: total time = 4839.50 ms / 213 tokens```
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
### Transformers
|
| 117 |
+
|
| 118 |
+
```python
|
| 119 |
+
from transformers import pipeline
|
| 120 |
+
import torch
|
| 121 |
+
|
| 122 |
+
generator = pipeline(task="text-generation", model='<path>', torch_dtype=torch.bfloat16, device_map="auto")
|
| 123 |
+
prompt = "### Instruction:\nWrite a short query which can be used to search a given document:\n\n### Input:\n<doc>\n\n### Response:\nshort query:"
|
| 124 |
+
result = generator(prompt, return_full_text=True, max_new_tokens=32, num_return_sequences=1)
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
## Training config
|
| 128 |
+
|
| 129 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
| 130 |
+
<details><summary>See axolotl config</summary>
|
| 131 |
+
|
| 132 |
+
axolotl version: `0.4.1`
|
| 133 |
+
```yaml
|
| 134 |
+
base_model: mistralai/Mistral-7B-v0.3
|
| 135 |
+
model_type: MistralForCausalLM
|
| 136 |
+
tokenizer_type: LlamaTokenizer
|
| 137 |
+
|
| 138 |
+
load_in_8bit: false
|
| 139 |
+
load_in_4bit: true
|
| 140 |
+
strict: false
|
| 141 |
+
val_set_size: 0.001
|
| 142 |
+
datasets:
|
| 143 |
+
- path: json
|
| 144 |
+
split: train
|
| 145 |
+
type: alpaca
|
| 146 |
+
data_files:
|
| 147 |
+
- /home/shutty/data/querygen/alpaca.json
|
| 148 |
+
|
| 149 |
+
dataset_prepared_path: last_run_prepared
|
| 150 |
+
output_dir: ./outputs/qlora-out
|
| 151 |
+
|
| 152 |
+
adapter: qlora
|
| 153 |
+
lora_model_dir:
|
| 154 |
+
|
| 155 |
+
sequence_len: 512
|
| 156 |
+
sample_packing: false
|
| 157 |
+
pad_to_sequence_len: true
|
| 158 |
+
|
| 159 |
+
lora_r: 32
|
| 160 |
+
lora_alpha: 16
|
| 161 |
+
lora_dropout: 0.05
|
| 162 |
+
lora_target_modules:
|
| 163 |
+
lora_target_linear: true
|
| 164 |
+
lora_fan_in_fan_out:
|
| 165 |
+
|
| 166 |
+
wandb_project:
|
| 167 |
+
wandb_entity:
|
| 168 |
+
wandb_watch:
|
| 169 |
+
wandb_name:
|
| 170 |
+
wandb_log_model:
|
| 171 |
+
|
| 172 |
+
gradient_accumulation_steps: 1
|
| 173 |
+
micro_batch_size: 40
|
| 174 |
+
num_epochs: 1
|
| 175 |
+
optimizer: adamw_torch
|
| 176 |
+
lr_scheduler: cosine
|
| 177 |
+
learning_rate: 0.00001
|
| 178 |
+
|
| 179 |
+
train_on_inputs: false
|
| 180 |
+
group_by_length: false
|
| 181 |
+
bf16: auto
|
| 182 |
+
fp16:
|
| 183 |
+
tf32: false
|
| 184 |
+
|
| 185 |
+
gradient_checkpointing: true
|
| 186 |
+
gradient_checkpointing_kwargs:
|
| 187 |
+
use_reentrant: true
|
| 188 |
+
early_stopping_patience:
|
| 189 |
+
resume_from_checkpoint:
|
| 190 |
+
local_rank:
|
| 191 |
+
xformers_attention:
|
| 192 |
+
flash_attention: true
|
| 193 |
+
|
| 194 |
+
logging_steps: 10
|
| 195 |
+
warmup_steps: 10
|
| 196 |
+
evals_per_epoch: 10
|
| 197 |
+
eval_table_size:
|
| 198 |
+
saves_per_epoch: 1
|
| 199 |
+
debug:
|
| 200 |
+
deepspeed:
|
| 201 |
+
weight_decay: 0.0
|
| 202 |
+
fsdp:
|
| 203 |
+
- full_shard
|
| 204 |
+
- auto_wrap
|
| 205 |
+
fsdp_config:
|
| 206 |
+
fsdp_limit_all_gathers: true
|
| 207 |
+
fsdp_sync_module_states: true
|
| 208 |
+
fsdp_offload_params: false
|
| 209 |
+
fsdp_use_orig_params: false
|
| 210 |
+
fsdp_cpu_ram_efficient_loading: false
|
| 211 |
+
fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer
|
| 212 |
+
fsdp_state_dict_type: FULL_STATE_DICT
|
| 213 |
+
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
| 214 |
+
special_tokens:
|
| 215 |
+
# torch_compile: true
|
| 216 |
+
# chat_template: chatml
|
| 217 |
+
```
|
| 218 |
+
|
| 219 |
+
</details><br>
|
| 220 |
+
|
| 221 |
+
## Training procedure
|
| 222 |
+
|
| 223 |
+
### Training hyperparameters
|
| 224 |
+
|
| 225 |
+
The following hyperparameters were used during training:
|
| 226 |
+
- learning_rate: 1e-05
|
| 227 |
+
- train_batch_size: 40
|
| 228 |
+
- eval_batch_size: 40
|
| 229 |
+
- seed: 42
|
| 230 |
+
- distributed_type: multi-GPU
|
| 231 |
+
- num_devices: 2
|
| 232 |
+
- total_train_batch_size: 80
|
| 233 |
+
- total_eval_batch_size: 80
|
| 234 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 235 |
+
- lr_scheduler_type: cosine
|
| 236 |
+
- lr_scheduler_warmup_steps: 10
|
| 237 |
+
- num_epochs: 1
|
| 238 |
+
|
| 239 |
+
### Training results
|
| 240 |
+
|
| 241 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 242 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
| 243 |
+
| No log | 0.0000 | 1 | 2.8685 |
|
| 244 |
+
| 1.3256 | 0.1000 | 5581 | 1.4044 |
|
| 245 |
+
| 1.3539 | 0.2000 | 11162 | 1.3793 |
|
| 246 |
+
| 1.3409 | 0.3000 | 16743 | 1.3659 |
|
| 247 |
+
| 1.3781 | 0.4000 | 22324 | 1.3552 |
|
| 248 |
+
| 1.3909 | 0.5000 | 27905 | 1.3470 |
|
| 249 |
+
| 1.4037 | 0.6000 | 33486 | 1.3423 |
|
| 250 |
+
| 1.3573 | 0.7000 | 39067 | 1.3383 |
|
| 251 |
+
| 1.3088 | 0.8000 | 44648 | 1.3366 |
|
| 252 |
+
| 1.3243 | 0.9000 | 50229 | 1.3357 |
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
### Framework versions
|
| 256 |
+
|
| 257 |
+
- PEFT 0.11.1
|
| 258 |
+
- Transformers 4.41.1
|
| 259 |
+
- Pytorch 2.3.0+cu121
|
| 260 |
+
- Datasets 2.19.1
|
| 261 |
+
- Tokenizers 0.19.1
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
## License
|
| 265 |
+
|
| 266 |
+
Apache 2.0
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.3",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MistralForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 1,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 4096,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 14336,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"model_type": "mistral",
|
| 15 |
+
"num_attention_heads": 32,
|
| 16 |
+
"num_hidden_layers": 32,
|
| 17 |
+
"num_key_value_heads": 8,
|
| 18 |
+
"rms_norm_eps": 1e-05,
|
| 19 |
+
"rope_theta": 1000000.0,
|
| 20 |
+
"sliding_window": null,
|
| 21 |
+
"tie_word_embeddings": false,
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.41.1",
|
| 24 |
+
"use_cache": false,
|
| 25 |
+
"vocab_size": 32768
|
| 26 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": 2,
|
| 6 |
+
"transformers_version": "4.41.1"
|
| 7 |
+
}
|
nixie-querygen-v3-f16.gguf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3f2daa2e052aa39e1cd344b8ae116d549af935ec939e0d288820e3e669dc5902
|
| 3 |
+
size 14497336768
|
nixie-querygen-v3-q4.gguf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c3144df8a5e95296e692631315beb887c737a12fbd30835cc551077a0fd3deb
|
| 3 |
+
size 4372811200
|
prompt_example.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### Instruction:
|
| 2 |
+
Write a short query which can be used to search a given document:
|
| 3 |
+
|
| 4 |
+
### Input:
|
| 5 |
+
The essence of a bridge is not just that it goes over something, but that there’s clear space underneath for a river, railway, or road. Maybe this is already obvious to you, but bridges present a unique structural challenge. In a regular road, the forces are transferred directly into the ground. On a bridge, all those forces on the span get concentrated into the piers or abutments on either side. Because of that, bridge substructures are among the strongest engineered systems on the planet. And yet, bridge foundations are built in some of the least ideal places for heavy loading. Rivers and oceans have soft, mucky soils that can’t hold much weight. Plus, obviously, a lot of them are underwater.
|
| 6 |
+
|
| 7 |
+
### Response:
|
| 8 |
+
short query:
|
pytorch_model-00001-of-00003.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77868eaa233dcf89114320f5d58e4bffd79b07099978ea019df795d7ea1a690e
|
| 3 |
+
size 4949477088
|
pytorch_model-00002-of-00003.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d61a251b427200f0029c6ce9a15fa6bb79f87fa6691889d4f8244045dcaabe09
|
| 3 |
+
size 4999844744
|
pytorch_model-00003-of-00003.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba4404e0b3e6235e8612ac3cd7560f425e4f6ebd9b88f65ce1f35799a490bbfd
|
| 3 |
+
size 4546828870
|
pytorch_model.bin.index.json
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 14496047104
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "pytorch_model-00003-of-00003.bin",
|
| 7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00003.bin",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00003.bin",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00003.bin",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00003-of-00003.bin",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00003.bin",
|
| 242 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 243 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 244 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 245 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 246 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 247 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 248 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 249 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 250 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 251 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 252 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 253 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 254 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 255 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 256 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 257 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 258 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 259 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 260 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 261 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 262 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 263 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 264 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 265 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 266 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 267 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 268 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 269 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 270 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 271 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 272 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 273 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 274 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 275 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 276 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 277 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 278 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 279 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 280 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 281 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 282 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00003.bin",
|
| 292 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 293 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 294 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 295 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00003.bin",
|
| 296 |
+
"model.norm.weight": "pytorch_model-00003-of-00003.bin"
|
| 297 |
+
}
|
| 298 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
|
| 3 |
+
size 587404
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|