--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: dl_a3_q3_results results: [] --- # dl_a3_q3_results This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 2.5716 - Bleu-1: 0.785 - Bleu-2: 0.6566 - Rouge-l: 0.3001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu-1 | Bleu-2 | Rouge-l | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:| | 2.8855 | 1.0 | 1250 | 3.1121 | 0.7437 | 0.5967 | 0.2186 | | 2.2274 | 2.0 | 2500 | 2.8313 | 0.749 | 0.6149 | 0.2604 | | 2.019 | 3.0 | 3750 | 2.6962 | 0.7661 | 0.6359 | 0.2851 | | 1.8669 | 4.0 | 5000 | 2.6241 | 0.7854 | 0.6544 | 0.2926 | | 1.805 | 5.0 | 6250 | 2.5832 | 0.7812 | 0.6525 | 0.2987 | | 1.7505 | 6.0 | 7500 | 2.5716 | 0.785 | 0.6566 | 0.3001 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.2