nlhm commited on
Commit
6ea7bc7
1 Parent(s): 0b83f79
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 230.29 +/- 34.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7963cea79d80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7963cea79e10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7963cea79ea0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7963cea79f30>", "_build": "<function ActorCriticPolicy._build at 0x7963cea79fc0>", "forward": "<function ActorCriticPolicy.forward at 0x7963cea7a050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7963cea7a0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7963cea7a170>", "_predict": "<function ActorCriticPolicy._predict at 0x7963cea7a200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7963cea7a290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7963cea7a320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7963cea7a3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7963cea73480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689668408386567344, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHiO8L5IMbk+03OLPaUCjb5s3eu8QtB5PQAAAAAAAAAAeuHyPvhNpT3gBtW9m3CDvo6Epby+Z7a8AACAPwAAAAD9B3C+CT5gPksBpz3r9oq+Ql2Uu6nPHzsAAAAAAAAAACMmpr78UCk9TVuXOTr3SLjDYV6+tscVOAAAgD8AAIA/2qbNvUEV3T0cVJo84OiWvsn8uLv2OQg9AAAAAAAAAADbrqW+3BMmPe+Nr7rVb8k4Z+ZFvqcfvDkAAIA/AACAP4AuSb6BP6W8OI0/u6Mikbk3XxA+GN1xOgAAgD8AAIA/msfQvOh9jj2G81Y9ek9Zvoc1UTy8BgG8AAAAAAAAAADTO7c+L9swPRZ5FLtenmW5kOoiPkF1gTkAAIA/AACAP+2+Sb7S4pk8M4yIum5v7zjC0ye+pHe0OQAAgD8AAIA/4KyuPmQV0T5qnM09Q2zMvreE7D1eDI68AAAAAAAAAABm6ju+YZufvN2aIjtXkuA5T/INPpmfhboAAIA/AACAP6bXOr5bcLa89IiluSY7Q7jfEx8+m5DoOAAAgD8AAIA/DYdiPs9bMT0wCRU53DCmN3idzD4FUyo2AACAPwAAgD8D4pi+gdabvJbLVTvaJZk52k0EPpgWfboAAIA/AACAP8Y/SD7O/pS86kh8OrzLv7ioQQe+lnmguQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDndkUbkwN+MAWyUS76MAXSUR0CZT/jlgc94dX2UKGgGR0BvaSxgRbr1aAdNRgFoCEdAmVAnrhR64XV9lChoBkdAMTciOearm2gHS7loCEdAmVCpEhJRO3V9lChoBkdAb4+FpPAO8WgHS+ZoCEdAmVJPYvnKXHV9lChoBkdAa87b/wRXfmgHTRABaAhHQJlT0bm2b5N1fZQoaAZHQHDq1NHpbEBoB0vXaAhHQJlVIEC/47B1fZQoaAZHQG6rhbfP5YZoB00IAWgIR0CZVf3bmEGrdX2UKGgGR0Bwp0pUgjhUaAdNAwFoCEdAmVZMC1Z1WHV9lChoBkdAbsXJpWV/t2gHS81oCEdAmVi6ZDzAe3V9lChoBkdAHQYq5LAYYWgHS7xoCEdAmVkq3iJfpnV9lChoBkdAa0zC9h7VrmgHS+poCEdAmVqcnRb8nHV9lChoBkdAcDkJwsGxEGgHS/RoCEdAmVsPqLS/kHV9lChoBkdAYK/dLxqfvmgHTegDaAhHQJlbHN0NjLB1fZQoaAZHQG5vNAkcCHRoB0vpaAhHQJlbOQT238Z1fZQoaAZHQHAJsJx//edoB0vsaAhHQJlcBl6JIlN1fZQoaAZHQGzisySFGodoB0vtaAhHQJm8gPhAGB51fZQoaAZHQF8+VzIV/MJoB03oA2gIR0CZvdsMy8BddX2UKGgGR0BwPQ9jgAIZaAdL7WgIR0CZvhqaPS2IdX2UKGgGR0BwWcE+xGDuaAdL7GgIR0CZwDdt2s7udX2UKGgGR0BwgImrsByTaAdNOgFoCEdAmcL9n003wXV9lChoBkdAawHC4SYgJWgHS/doCEdAmcPjSThYNnV9lChoBkdAcTCbOeJ53WgHS9FoCEdAmcP0APuognV9lChoBkdAcEYQokRjBmgHTQQBaAhHQJnEKTUy57R1fZQoaAZHQG/Zb5/LDAJoB0v6aAhHQJnFdcSoOx11fZQoaAZHQG/7hnBciW5oB0v2aAhHQJnFt1zQu291fZQoaAZHQHBo/BN21UloB0v+aAhHQJnGPw3HaOB1fZQoaAZHQGFRRZ2ZAptoB03oA2gIR0CZxm5zo2XLdX2UKGgGR0Buecd7v5P/aAdNbgFoCEdAmcZyPdVNpXV9lChoBkdAcLwQyhzvJGgHTQkBaAhHQJnHVIf8uSR1fZQoaAZHQHAML8BMi8poB0vfaAhHQJnIDEehf0F1fZQoaAZHQG+Fguh9LHxoB00IAWgIR0CZyfQu27WedX2UKGgGR0Bt5xCD28IzaAdL+WgIR0CZy3FH8TBZdX2UKGgGR0Bay+uFHrhSaAdN6ANoCEdAmcxNpZfUnXV9lChoBkdAb9Sg3974SGgHS+JoCEdAmczXRkVer3V9lChoBkdAbTcqNp/PPmgHS9doCEdAmc1p6D5CW3V9lChoBkdAXyjLW7OE/WgHTegDaAhHQJnN6I7/4qR1fZQoaAZHQFA3/47A+INoB0ueaAhHQJnOEYTCcgB1fZQoaAZHQDBY5Lh73PBoB0vLaAhHQJnOQl4TsY51fZQoaAZHQHFDSElE7XBoB0vQaAhHQJnOQaR6nix1fZQoaAZHQHFPuj2zv7ZoB0vpaAhHQJnP2HO8kD91fZQoaAZHQGsbAo5PuXxoB0vraAhHQJnQHHxSYPZ1fZQoaAZHQDDsmG/N7jVoB0uTaAhHQJnTISQHRkV1fZQoaAZHQHB/khFEy+JoB00pAWgIR0CZ1RP8Q7LddX2UKGgGR0BszFUVBUrDaAdL/WgIR0CZ1TMPz4DcdX2UKGgGR0BuxXeizsyBaAdNfAFoCEdAmdb2OhkAgnV9lChoBkdAbfIyfL9uP2gHTQUBaAhHQJnYQF4cFQl1fZQoaAZHQG8zO7YkE9toB0vsaAhHQJnZJ2X9itt1fZQoaAZHQHC0e6y0KJFoB00IAWgIR0CZ2Zr1/Ue/dX2UKGgGR0Bv1AF7laKUaAdL/2gIR0CZ2bVymygPdX2UKGgGR0But1Ew35vcaAdL/mgIR0CZ2hNGViWndX2UKGgGR0BvK1ALRa5gaAdL5WgIR0CZ2shTOxB3dX2UKGgGR0Bv7NSwW3z+aAdL72gIR0CZ24AD7qIKdX2UKGgGR0BwbTt4RmK7aAdL1WgIR0CZ3XHMlkYodX2UKGgGR0AzUYplSS/1aAdLrmgIR0CZ3ZChew9rdX2UKGgGR0Bwn9IkJKJ3aAdL5GgIR0CZ4Ot1ZDArdX2UKGgGR0BqcB0MgEEDaAdL/2gIR0CZ5bevZAY6dX2UKGgGR0BuKetyPuG9aAdL1mgIR0CZ5f3V09yMdX2UKGgGR0BwAcwHqu8saAdL3WgIR0CZ5x5o4+8odX2UKGgGR0Bvln1xsEaEaAdL5mgIR0CZ6fWoFV1fdX2UKGgGR0BtXs189fTkaAdNFQFoCEdAmevwe3hGY3V9lChoBkdAb2S2Hck+o2gHTRMBaAhHQJnvTF+/gzh1fZQoaAZHQG6TUSZjQRhoB0vwaAhHQJnv5PWQOnV1fZQoaAZHQG3om6GxlhBoB0v/aAhHQJnxUSuhbnp1fZQoaAZHQF0ndUbT+ehoB03oA2gIR0CZ8yOJtSAIdX2UKGgGR0BrwQwZflZHaAdNAAFoCEdAmfTf+n62v3V9lChoBkdAbqY9eQdS22gHTaoBaAhHQJn3GWJJoTR1fZQoaAZHQHA6SPZIxxloB00AAWgIR0CZ+HLSuyNXdX2UKGgGR0Bw3MEMb3oLaAdNLgFoCEdAmfrGcz67/XV9lChoBkdAYc4WAPNFB2gHTegDaAhHQJn7XgFX7tR1fZQoaAZHQF8y40/GEPFoB03oA2gIR0CZ+252hZhbdX2UKGgGR0AopKbKA8SxaAdLwGgIR0CZ/DzMRpUQdX2UKGgGR0BuM48nuy/saAdNBQFoCEdAmfyIEOiFkHV9lChoBkdAbM3tlZowmGgHTSMBaAhHQJn81xVAAyV1fZQoaAZHQHAH1v60pmVoB0vyaAhHQJn9r5aePJd1fZQoaAZHQGshHbypaRpoB0v1aAhHQJn/jEqDsdF1fZQoaAZHwCbXluFYdQxoB0uqaAhHQJoCouoP07N1fZQoaAZHQGANygf2bodoB03oA2gIR0CaA4eIEbHZdX2UKGgGR0BvGXxH5JsgaAdL4GgIR0CaBcEQ5FPSdX2UKGgGR0Bu9lcSoOx0aAdL6WgIR0CaBiXbdrO8dX2UKGgGR0BecVP3ztkXaAdN6ANoCEdAmgZCH6/IsHV9lChoBkdAb7Xwm3OObWgHS91oCEdAmga1JL/S6XV9lChoBkdAbyzfJFLFoGgHS+doCEdAmgd4yO7xu3V9lChoBkdAb1WB7NSqEWgHS9RoCEdAmglqpo9LYnV9lChoBkdAazyOS4e9z2gHTUICaAhHQJoNUK/mDDl1fZQoaAZHQGzrn4O+ZgJoB0vjaAhHQJoNpPFefI11fZQoaAZHQG+1BsQ/X5FoB03QAWgIR0CaDtyOaOPvdX2UKGgGR0Bv57rzGxUvaAdL+WgIR0CaD8Qp4KQadX2UKGgGR0BnOoWJrLyMaAdNewFoCEdAmg/rgjyFwnV9lChoBkdAcKQyqMm4RWgHS+doCEdAmhE1W8yvcXV9lChoBkdAVeNYfW+XaGgHTegDaAhHQJoRUEzO5ax1fZQoaAZHQHB7JLEk0JpoB0vgaAhHQJoR2kbgjyF1fZQoaAZHQG9JNJnQID5oB00GAWgIR0CaFoW8RL9NdX2UKGgGR0Bu0Xpt78ekaAdL/GgIR0CaGj08/2TQdX2UKGgGR0BwFEijcmBwaAdL4GgIR0CaGl7BO58SdX2UKGgGR0BwD9mJ3xFzaAdNHAFoCEdAmhzqcNH6M3V9lChoBkdAbVDgQ6IWQGgHTQMBaAhHQJoePEm6XjV1fZQoaAZHQGuYgDRtxdZoB0vqaAhHQJoeixX4j8l1fZQoaAZHQGADZDRc/t9oB03oA2gIR0CaH6a0x/NJdX2UKGgGR0BvGVFOO802aAdL8mgIR0CaIBg00m+kdX2UKGgGR0Bw6pmOEM9baAdLz2gIR0CaJLbRnezldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e119dc226022e50a23c1ad226fcffab72725ba1d4db15923fda27a54da7116c
3
+ size 146162
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7963cea79d80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7963cea79e10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7963cea79ea0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7963cea79f30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7963cea79fc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7963cea7a050>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7963cea7a0e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7963cea7a170>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7963cea7a200>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7963cea7a290>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7963cea7a320>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7963cea7a3b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7963cea73480>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1689668408386567344,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHiO8L5IMbk+03OLPaUCjb5s3eu8QtB5PQAAAAAAAAAAeuHyPvhNpT3gBtW9m3CDvo6Epby+Z7a8AACAPwAAAAD9B3C+CT5gPksBpz3r9oq+Ql2Uu6nPHzsAAAAAAAAAACMmpr78UCk9TVuXOTr3SLjDYV6+tscVOAAAgD8AAIA/2qbNvUEV3T0cVJo84OiWvsn8uLv2OQg9AAAAAAAAAADbrqW+3BMmPe+Nr7rVb8k4Z+ZFvqcfvDkAAIA/AACAP4AuSb6BP6W8OI0/u6Mikbk3XxA+GN1xOgAAgD8AAIA/msfQvOh9jj2G81Y9ek9Zvoc1UTy8BgG8AAAAAAAAAADTO7c+L9swPRZ5FLtenmW5kOoiPkF1gTkAAIA/AACAP+2+Sb7S4pk8M4yIum5v7zjC0ye+pHe0OQAAgD8AAIA/4KyuPmQV0T5qnM09Q2zMvreE7D1eDI68AAAAAAAAAABm6ju+YZufvN2aIjtXkuA5T/INPpmfhboAAIA/AACAP6bXOr5bcLa89IiluSY7Q7jfEx8+m5DoOAAAgD8AAIA/DYdiPs9bMT0wCRU53DCmN3idzD4FUyo2AACAPwAAgD8D4pi+gdabvJbLVTvaJZk52k0EPpgWfboAAIA/AACAP8Y/SD7O/pS86kh8OrzLv7ioQQe+lnmguQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVBwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDndkUbkwN+MAWyUS76MAXSUR0CZT/jlgc94dX2UKGgGR0BvaSxgRbr1aAdNRgFoCEdAmVAnrhR64XV9lChoBkdAMTciOearm2gHS7loCEdAmVCpEhJRO3V9lChoBkdAb4+FpPAO8WgHS+ZoCEdAmVJPYvnKXHV9lChoBkdAa87b/wRXfmgHTRABaAhHQJlT0bm2b5N1fZQoaAZHQHDq1NHpbEBoB0vXaAhHQJlVIEC/47B1fZQoaAZHQG6rhbfP5YZoB00IAWgIR0CZVf3bmEGrdX2UKGgGR0Bwp0pUgjhUaAdNAwFoCEdAmVZMC1Z1WHV9lChoBkdAbsXJpWV/t2gHS81oCEdAmVi6ZDzAe3V9lChoBkdAHQYq5LAYYWgHS7xoCEdAmVkq3iJfpnV9lChoBkdAa0zC9h7VrmgHS+poCEdAmVqcnRb8nHV9lChoBkdAcDkJwsGxEGgHS/RoCEdAmVsPqLS/kHV9lChoBkdAYK/dLxqfvmgHTegDaAhHQJlbHN0NjLB1fZQoaAZHQG5vNAkcCHRoB0vpaAhHQJlbOQT238Z1fZQoaAZHQHAJsJx//edoB0vsaAhHQJlcBl6JIlN1fZQoaAZHQGzisySFGodoB0vtaAhHQJm8gPhAGB51fZQoaAZHQF8+VzIV/MJoB03oA2gIR0CZvdsMy8BddX2UKGgGR0BwPQ9jgAIZaAdL7WgIR0CZvhqaPS2IdX2UKGgGR0BwWcE+xGDuaAdL7GgIR0CZwDdt2s7udX2UKGgGR0BwgImrsByTaAdNOgFoCEdAmcL9n003wXV9lChoBkdAawHC4SYgJWgHS/doCEdAmcPjSThYNnV9lChoBkdAcTCbOeJ53WgHS9FoCEdAmcP0APuognV9lChoBkdAcEYQokRjBmgHTQQBaAhHQJnEKTUy57R1fZQoaAZHQG/Zb5/LDAJoB0v6aAhHQJnFdcSoOx11fZQoaAZHQG/7hnBciW5oB0v2aAhHQJnFt1zQu291fZQoaAZHQHBo/BN21UloB0v+aAhHQJnGPw3HaOB1fZQoaAZHQGFRRZ2ZAptoB03oA2gIR0CZxm5zo2XLdX2UKGgGR0Buecd7v5P/aAdNbgFoCEdAmcZyPdVNpXV9lChoBkdAcLwQyhzvJGgHTQkBaAhHQJnHVIf8uSR1fZQoaAZHQHAML8BMi8poB0vfaAhHQJnIDEehf0F1fZQoaAZHQG+Fguh9LHxoB00IAWgIR0CZyfQu27WedX2UKGgGR0Bt5xCD28IzaAdL+WgIR0CZy3FH8TBZdX2UKGgGR0Bay+uFHrhSaAdN6ANoCEdAmcxNpZfUnXV9lChoBkdAb9Sg3974SGgHS+JoCEdAmczXRkVer3V9lChoBkdAbTcqNp/PPmgHS9doCEdAmc1p6D5CW3V9lChoBkdAXyjLW7OE/WgHTegDaAhHQJnN6I7/4qR1fZQoaAZHQFA3/47A+INoB0ueaAhHQJnOEYTCcgB1fZQoaAZHQDBY5Lh73PBoB0vLaAhHQJnOQl4TsY51fZQoaAZHQHFDSElE7XBoB0vQaAhHQJnOQaR6nix1fZQoaAZHQHFPuj2zv7ZoB0vpaAhHQJnP2HO8kD91fZQoaAZHQGsbAo5PuXxoB0vraAhHQJnQHHxSYPZ1fZQoaAZHQDDsmG/N7jVoB0uTaAhHQJnTISQHRkV1fZQoaAZHQHB/khFEy+JoB00pAWgIR0CZ1RP8Q7LddX2UKGgGR0BszFUVBUrDaAdL/WgIR0CZ1TMPz4DcdX2UKGgGR0BuxXeizsyBaAdNfAFoCEdAmdb2OhkAgnV9lChoBkdAbfIyfL9uP2gHTQUBaAhHQJnYQF4cFQl1fZQoaAZHQG8zO7YkE9toB0vsaAhHQJnZJ2X9itt1fZQoaAZHQHC0e6y0KJFoB00IAWgIR0CZ2Zr1/Ue/dX2UKGgGR0Bv1AF7laKUaAdL/2gIR0CZ2bVymygPdX2UKGgGR0But1Ew35vcaAdL/mgIR0CZ2hNGViWndX2UKGgGR0BvK1ALRa5gaAdL5WgIR0CZ2shTOxB3dX2UKGgGR0Bv7NSwW3z+aAdL72gIR0CZ24AD7qIKdX2UKGgGR0BwbTt4RmK7aAdL1WgIR0CZ3XHMlkYodX2UKGgGR0AzUYplSS/1aAdLrmgIR0CZ3ZChew9rdX2UKGgGR0Bwn9IkJKJ3aAdL5GgIR0CZ4Ot1ZDArdX2UKGgGR0BqcB0MgEEDaAdL/2gIR0CZ5bevZAY6dX2UKGgGR0BuKetyPuG9aAdL1mgIR0CZ5f3V09yMdX2UKGgGR0BwAcwHqu8saAdL3WgIR0CZ5x5o4+8odX2UKGgGR0Bvln1xsEaEaAdL5mgIR0CZ6fWoFV1fdX2UKGgGR0BtXs189fTkaAdNFQFoCEdAmevwe3hGY3V9lChoBkdAb2S2Hck+o2gHTRMBaAhHQJnvTF+/gzh1fZQoaAZHQG6TUSZjQRhoB0vwaAhHQJnv5PWQOnV1fZQoaAZHQG3om6GxlhBoB0v/aAhHQJnxUSuhbnp1fZQoaAZHQF0ndUbT+ehoB03oA2gIR0CZ8yOJtSAIdX2UKGgGR0BrwQwZflZHaAdNAAFoCEdAmfTf+n62v3V9lChoBkdAbqY9eQdS22gHTaoBaAhHQJn3GWJJoTR1fZQoaAZHQHA6SPZIxxloB00AAWgIR0CZ+HLSuyNXdX2UKGgGR0Bw3MEMb3oLaAdNLgFoCEdAmfrGcz67/XV9lChoBkdAYc4WAPNFB2gHTegDaAhHQJn7XgFX7tR1fZQoaAZHQF8y40/GEPFoB03oA2gIR0CZ+252hZhbdX2UKGgGR0AopKbKA8SxaAdLwGgIR0CZ/DzMRpUQdX2UKGgGR0BuM48nuy/saAdNBQFoCEdAmfyIEOiFkHV9lChoBkdAbM3tlZowmGgHTSMBaAhHQJn81xVAAyV1fZQoaAZHQHAH1v60pmVoB0vyaAhHQJn9r5aePJd1fZQoaAZHQGshHbypaRpoB0v1aAhHQJn/jEqDsdF1fZQoaAZHwCbXluFYdQxoB0uqaAhHQJoCouoP07N1fZQoaAZHQGANygf2bodoB03oA2gIR0CaA4eIEbHZdX2UKGgGR0BvGXxH5JsgaAdL4GgIR0CaBcEQ5FPSdX2UKGgGR0Bu9lcSoOx0aAdL6WgIR0CaBiXbdrO8dX2UKGgGR0BecVP3ztkXaAdN6ANoCEdAmgZCH6/IsHV9lChoBkdAb7Xwm3OObWgHS91oCEdAmga1JL/S6XV9lChoBkdAbyzfJFLFoGgHS+doCEdAmgd4yO7xu3V9lChoBkdAb1WB7NSqEWgHS9RoCEdAmglqpo9LYnV9lChoBkdAazyOS4e9z2gHTUICaAhHQJoNUK/mDDl1fZQoaAZHQGzrn4O+ZgJoB0vjaAhHQJoNpPFefI11fZQoaAZHQG+1BsQ/X5FoB03QAWgIR0CaDtyOaOPvdX2UKGgGR0Bv57rzGxUvaAdL+WgIR0CaD8Qp4KQadX2UKGgGR0BnOoWJrLyMaAdNewFoCEdAmg/rgjyFwnV9lChoBkdAcKQyqMm4RWgHS+doCEdAmhE1W8yvcXV9lChoBkdAVeNYfW+XaGgHTegDaAhHQJoRUEzO5ax1fZQoaAZHQHB7JLEk0JpoB0vgaAhHQJoR2kbgjyF1fZQoaAZHQG9JNJnQID5oB00GAWgIR0CaFoW8RL9NdX2UKGgGR0Bu0Xpt78ekaAdL/GgIR0CaGj08/2TQdX2UKGgGR0BwFEijcmBwaAdL4GgIR0CaGl7BO58SdX2UKGgGR0BwD9mJ3xFzaAdNHAFoCEdAmhzqcNH6M3V9lChoBkdAbVDgQ6IWQGgHTQMBaAhHQJoePEm6XjV1fZQoaAZHQGuYgDRtxdZoB0vqaAhHQJoeixX4j8l1fZQoaAZHQGADZDRc/t9oB03oA2gIR0CaH6a0x/NJdX2UKGgGR0BvGVFOO802aAdL8mgIR0CaIBg00m+kdX2UKGgGR0Bw6pmOEM9baAdLz2gIR0CaJLbRnezldWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3b2efac858a756d88f8961d69207d2703334500af74d078e92955b16e96f14c
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad024f3e9c3cedef7618964590bb2250c6bc48eac6653f6bf33250d17cba6a29
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (140 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 230.29183730000005, "std_reward": 34.05886208963518, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-18T08:51:19.080768"}