mohameodo commited on
Commit
9a83412
·
verified ·
1 Parent(s): 51d91e0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -71
README.md CHANGED
@@ -1,72 +1,98 @@
1
- # Nexiloop Nova Model: Fully Open Source
2
-
3
- **License:** Apache-2.0
4
- **Datasets:**
5
- - cerebras/SlimPajama-627B
6
- - bigcode/starcoderdata
7
- - OpenAssistant/oasst_top1_2023-08-25
8
- **Language:** English
9
-
10
- ---
11
-
12
- <div align="center">
13
-
14
- # Nexiloop Nova-1.1B
15
- **Open Source and Ready for Use**
16
- Fully optimized for various applications with a compact architecture.
17
-
18
- </div>
19
-
20
- [GitHub Repository](https://github.com/mohameodo/nova)
21
-
22
- ---
23
-
24
- The **Nexiloop Nova-1.1B** model is a fine-tuned version of the Llama 2 architecture with **1.1B parameters**. It has been trained on over **3 trillion tokens** and is built to provide high-quality, efficient responses in a wide variety of conversational contexts.
25
-
26
- ### **Features:**
27
- - **Optimized for Compact Systems:** With just 1.1B parameters, Nexiloop Nova is perfect for applications where memory and computation are limited.
28
- - **Pretraining:** The model has been pre-trained on the **SlimPajama-627B** dataset, fine-tuned for even better conversational abilities.
29
-
30
- ### **Training Overview:**
31
- We adopted the same architecture and tokenizer as **Llama 2**, which allows Nexiloop Nova to plug into many existing open-source projects. The training, which started on **2023-09-01**, used **16 A100-40G GPUs** to achieve remarkable optimization.
32
-
33
- The model was initially fine-tuned on a variant of the **UltraChat** dataset, which consists of synthetic dialogues generated by **ChatGPT**. It was then further aligned using the **DPOTrainer** from **TRL**, utilizing a ranking dataset containing **64k prompts** and responses from **GPT-4**.
34
-
35
- ---
36
-
37
- ### **How to Use Nexiloop Nova Model**
38
-
39
- To use Nexiloop Nova, you'll need **transformers>=4.34**. Below is a simple example showing how to integrate the model into your application.
40
-
41
- #### Example Code:
42
-
43
- ```bash
44
- # Install necessary libraries
45
- pip install transformers==4.34
46
- pip install accelerate
47
-
48
-
49
-
50
- import torch
51
- from transformers import pipeline
52
-
53
- pipe = pipeline("text-generation", model="nexiloop/nova", torch_dtype=torch.bfloat16, device_map="auto")
54
-
55
- # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
56
- messages = [
57
- {
58
- "role": "system",
59
- "content": "You are a friendly chatbot who always responds in the style of a pirate",
60
- },
61
- {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
62
- ]
63
- prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
64
- outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
65
- print(outputs[0]["generated_text"])
66
- # <|system|>
67
- # You are a friendly chatbot who always responds in the style of a pirate.</s>
68
- # <|user|>
69
- # How many helicopters can a human eat in one sitting?</s>
70
- # <|assistant|>
71
- # ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  ```
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - aa
5
+ - ae
6
+ - am
7
+ - en
8
+ - es
9
+ - ar
10
+ - ja
11
+ - eo
12
+ - fr
13
+ - ru
14
+ pipeline_tag: text-generation
15
+ tags:
16
+ - nova
17
+ - ai
18
+ - nlop
19
+ - nexiloop
20
+ - llama
21
+ - llm
22
+ - novaai
23
+ - ainlop
24
+ - nlopai
25
+ - nexai
26
+ ---
27
+ # Nexiloop Nova Model: Fully Open Source
28
+
29
+ **License:** Apache-2.0
30
+ **Datasets:**
31
+ - cerebras/SlimPajama-627B
32
+ - bigcode/starcoderdata
33
+ - OpenAssistant/oasst_top1_2023-08-25
34
+ **Language:** English
35
+
36
+ ---
37
+
38
+ <div align="center">
39
+
40
+ # Nexiloop Nova-1.1B
41
+ **Open Source and Ready for Use**
42
+ Fully optimized for various applications with a compact architecture.
43
+
44
+ </div>
45
+
46
+ [GitHub Repository](https://github.com/mohameodo/nova)
47
+
48
+ ---
49
+
50
+ The **Nexiloop Nova-1.1B** model is a fine-tuned version of the Llama 2 architecture with **1.1B parameters**. It has been trained on over **3 trillion tokens** and is built to provide high-quality, efficient responses in a wide variety of conversational contexts.
51
+
52
+ ### **Features:**
53
+ - **Optimized for Compact Systems:** With just 1.1B parameters, Nexiloop Nova is perfect for applications where memory and computation are limited.
54
+ - **Pretraining:** The model has been pre-trained on the **SlimPajama-627B** dataset, fine-tuned for even better conversational abilities.
55
+
56
+ ### **Training Overview:**
57
+ We adopted the same architecture and tokenizer as **Llama 2**, which allows Nexiloop Nova to plug into many existing open-source projects. The training, which started on **2023-09-01**, used **16 A100-40G GPUs** to achieve remarkable optimization.
58
+
59
+ The model was initially fine-tuned on a variant of the **UltraChat** dataset, which consists of synthetic dialogues generated by **ChatGPT**. It was then further aligned using the **DPOTrainer** from **TRL**, utilizing a ranking dataset containing **64k prompts** and responses from **GPT-4**.
60
+
61
+ ---
62
+
63
+ ### **How to Use Nexiloop Nova Model**
64
+
65
+ To use Nexiloop Nova, you'll need **transformers>=4.34**. Below is a simple example showing how to integrate the model into your application.
66
+
67
+ #### Example Code:
68
+
69
+ ```bash
70
+ # Install necessary libraries
71
+ pip install transformers==4.34
72
+ pip install accelerate
73
+
74
+
75
+
76
+ import torch
77
+ from transformers import pipeline
78
+
79
+ pipe = pipeline("text-generation", model="nexiloop/nova", torch_dtype=torch.bfloat16, device_map="auto")
80
+
81
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
82
+ messages = [
83
+ {
84
+ "role": "system",
85
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
86
+ },
87
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
88
+ ]
89
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
90
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
91
+ print(outputs[0]["generated_text"])
92
+ # <|system|>
93
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
94
+ # <|user|>
95
+ # How many helicopters can a human eat in one sitting?</s>
96
+ # <|assistant|>
97
+ # ...
98
  ```