nomadrp commited on
Commit
f261610
·
verified ·
1 Parent(s): a4a88d0

msimpo-30each-v2

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
3
+ library_name: transformers
4
+ model_name: msimpo-30each-v2
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - cpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for msimpo-30each-v2
13
+
14
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="nomadrp/msimpo-30each-v2", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+
31
+
32
+
33
+ This model was trained with CPO, a method introduced in [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.48.2
39
+ - Pytorch: 2.2.0+cu118
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite CPO as:
46
+
47
+ ```bibtex
48
+ @inproceedings{xu2024contrastive,
49
+ title = {{Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}},
50
+ author = {Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim},
51
+ year = 2024,
52
+ booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024},
53
+ publisher = {OpenReview.net},
54
+ url = {https://openreview.net/forum?id=51iwkioZpn}
55
+ }
56
+ ```
57
+
58
+ Cite TRL as:
59
+
60
+ ```bibtex
61
+ @misc{vonwerra2022trl,
62
+ title = {{TRL: Transformer Reinforcement Learning}},
63
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
64
+ year = 2020,
65
+ journal = {GitHub repository},
66
+ publisher = {GitHub},
67
+ howpublished = {\url{https://github.com/huggingface/trl}}
68
+ }
69
+ ```