--- language: - en tags: - computer-vision - object-detection - astronomy - jwst - yolo - ultralytics license: mit datasets: - norbertm/jwst-quality-analysis-dataset metrics: - mAP50 - precision - recall --- # JWST Astronomical Object Detection Model This is a fine-tuned YOLO model specifically trained for detecting astronomical objects in JWST (James Webb Space Telescope) images. ## Model Details - **Architecture**: YOLOv8n (nano) - **Training Data**: 2,587 high-quality JWST images - **Classes**: 2 (bright_object, galaxy_like) - **Performance**: 26.7% mAP50, 52.7% precision on bright objects - **Training Time**: 75 epochs (~25 hours) ## Usage ```python from ultralytics import YOLO # Load the model model = YOLO("norbertm/jwst-astronomical-detection") # Run inference results = model("path/to/jwst/image.png", conf=0.15) ``` ## Training Details - **Dataset**: 2,587 JWST images with automated annotations - **Instruments**: NIRCAM (Near-Infrared Camera) - **Filters**: F090W, F150W, F200W, F277W, F356W, F444W - **Targets**: Stephan's Quintet, M16, NGC 3324, NGC 3132, SMACS J0723.3-7327, WASP-39b ## Research Applications - Automated astronomical object detection - Multi-wavelength object correlation - Quality assessment of JWST data - Large-scale astronomical surveys ## Citation If you use this model in your research, please cite: ```bibtex @dataset{jwst_quality_analysis, title={JWST Quality Analysis Dataset}, author={Your Name}, year={2024}, url={https://huggingface.co/datasets/norbertm/jwst-quality-analysis-dataset} } ``` ## License MIT License - see LICENSE file for details.