Upload folder using huggingface_hub
Browse files- MyPipe.py +65 -0
- config.json +13 -2
MyPipe.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers import Pipeline
|
| 3 |
+
import requests
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
class MnistPipe(Pipeline):
|
| 9 |
+
def __init__(self,**kwargs):
|
| 10 |
+
|
| 11 |
+
# self.tokenizer = (...) # code if you want to instantiate more parameters
|
| 12 |
+
|
| 13 |
+
Pipeline.__init__(self,**kwargs) # self.model automatically instantiated here
|
| 14 |
+
|
| 15 |
+
self.transform = transforms.Compose(
|
| 16 |
+
[transforms.ToTensor(),
|
| 17 |
+
transforms.Resize((28,28), antialias=True)
|
| 18 |
+
])
|
| 19 |
+
|
| 20 |
+
def _sanitize_parameters(self, **kwargs):
|
| 21 |
+
# will make sure where each parameter goes
|
| 22 |
+
preprocess_kwargs = {}
|
| 23 |
+
postprocess_kwargs = {}
|
| 24 |
+
if "download" in kwargs:
|
| 25 |
+
preprocess_kwargs["download"] = kwargs["download"]
|
| 26 |
+
if "clean_output" in kwargs :
|
| 27 |
+
postprocess_kwargs["clean_output"] = kwargs["clean_output"]
|
| 28 |
+
return preprocess_kwargs, {}, postprocess_kwargs
|
| 29 |
+
|
| 30 |
+
def preprocess(self, inputs, download=False):
|
| 31 |
+
if download == True :
|
| 32 |
+
# call download_img method and name image as "image.png"
|
| 33 |
+
self.download_img(inputs)
|
| 34 |
+
inputs = "image.png"
|
| 35 |
+
|
| 36 |
+
# we open and process the image
|
| 37 |
+
img = Image.open(inputs)
|
| 38 |
+
gray = img.convert('L')
|
| 39 |
+
tensor = self.transform(gray)
|
| 40 |
+
tensor = tensor.unsqueeze(0)
|
| 41 |
+
return tensor
|
| 42 |
+
|
| 43 |
+
def _forward(self, tensor):
|
| 44 |
+
with torch.no_grad():
|
| 45 |
+
# the model has been automatically instantiated
|
| 46 |
+
# in the __init__ method
|
| 47 |
+
out = self.model(tensor)
|
| 48 |
+
return out
|
| 49 |
+
|
| 50 |
+
def postprocess(self, out, clean_output=True):
|
| 51 |
+
if clean_output ==True :
|
| 52 |
+
label = torch.argmax(out,axis=-1) # get class
|
| 53 |
+
label = label.tolist()[0]
|
| 54 |
+
return label
|
| 55 |
+
else :
|
| 56 |
+
return out
|
| 57 |
+
|
| 58 |
+
def download_img(self,url):
|
| 59 |
+
# if download = True download image and name it image.png
|
| 60 |
+
response = requests.get(url, stream=True)
|
| 61 |
+
|
| 62 |
+
with open("image.png", "wb") as f:
|
| 63 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 64 |
+
f.write(chunk)
|
| 65 |
+
print("image saved as image.png")
|
config.json
CHANGED
|
@@ -1,13 +1,24 @@
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"MnistModel"
|
| 4 |
],
|
| 5 |
"auto_map": {
|
| 6 |
-
"AutoConfig": "MyConfig.MnistConfig",
|
| 7 |
-
"AutoModelForImageClassification": "MyModel.MnistModel"
|
| 8 |
},
|
| 9 |
"conv1": 10,
|
| 10 |
"conv2": 20,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
"model_type": "MobileNetV1",
|
| 12 |
"torch_dtype": "float32",
|
| 13 |
"transformers_version": "4.35.2"
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "not-lain/MyRepo",
|
| 3 |
"architectures": [
|
| 4 |
"MnistModel"
|
| 5 |
],
|
| 6 |
"auto_map": {
|
| 7 |
+
"AutoConfig": "not-lain/MyRepo--MyConfig.MnistConfig",
|
| 8 |
+
"AutoModelForImageClassification": "not-lain/MyRepo--MyModel.MnistModel"
|
| 9 |
},
|
| 10 |
"conv1": 10,
|
| 11 |
"conv2": 20,
|
| 12 |
+
"custom_pipelines": {
|
| 13 |
+
"image-classification": {
|
| 14 |
+
"impl": "MyPipe.MnistPipe",
|
| 15 |
+
"pt": [
|
| 16 |
+
"AutoModelForImageClassification"
|
| 17 |
+
],
|
| 18 |
+
"tf": [],
|
| 19 |
+
"type": "image"
|
| 20 |
+
}
|
| 21 |
+
},
|
| 22 |
"model_type": "MobileNetV1",
|
| 23 |
"torch_dtype": "float32",
|
| 24 |
"transformers_version": "4.35.2"
|