File size: 6,584 Bytes
e288dc3 1c8072b e288dc3 1c8072b e288dc3 1c8072b e288dc3 1c8072b e288dc3 f395d63 e288dc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
language: vi
tags:
- ner
- named-entity-recognition
- slot-filling
- smart-home
- vietnamese
- phobert
- token-classification
license: mit
datasets:
- custom-vn-slu-augmented
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: PhoBERT NER for Vietnamese Smart Home Slot Filling
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: VN-SLU Augmented Dataset
type: custom
metrics:
- type: accuracy
value: 96.64
name: Accuracy
- type: f1
value: 86.55
name: F1 Score (Weighted)
- type: f1
value: 67.04
name: F1 Score (Macro)
widget:
- text: "bật đèn phòng khách"
- text: "tắt quạt phòng ngủ lúc 10 giờ tối"
- text: "điều chỉnh nhiệt độ điều hòa 25 độ"
- text: "mở cửa garage sau 5 phút"
---
# PhoBERT Fine-tuned for Vietnamese Smart Home NER/Slot Filling
This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) for Named Entity Recognition (NER) in Vietnamese smart home commands. It extracts slot values such as devices, locations, times, and numeric values from user commands.
## Model Description
- **Base Model**: vinai/phobert-base
- **Task**: Token Classification / Slot Filling for Smart Home Commands
- **Language**: Vietnamese
- **Number of Entity Types**: 13
## Intended Uses & Limitations
### Intended Uses
- Extracting entities from Vietnamese smart home voice commands
- Slot filling for voice assistant systems
- Integration with intent classification for complete NLU pipeline
- Research in Vietnamese NLP for IoT applications
### Limitations
- Optimized specifically for smart home domain
- May not generalize well to other domains
- Trained on Vietnamese language only
- Best performance when used with corresponding intent classifier
## Entity Types (Slot Labels)
The model recognizes 13 types of entities:
1. `B-device` / `I-device` - Device names (e.g., "đèn", "quạt", "điều hòa")
2. `B-living_space` / `I-living_space` - Room/location names (e.g., "phòng khách", "phòng ngủ")
3. `B-time_at` / `I-time_at` - Specific times (e.g., "10 giờ tối", "7 giờ sáng")
4. `B-duration` / `I-duration` - Time durations (e.g., "5 phút", "2 giờ")
5. `B-target_number` / `I-target_number` - Target values (e.g., "25 độ", "50%")
6. `B-changing_value` / `I-changing_value` - Change amounts (e.g., "tăng 10%")
7. `O` - Outside/No entity
## How to Use
### Using Transformers Library
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
import json
# Load model and tokenizer
model_name = "ntgiaky/phobert-ner-smart-home"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
# Load label mappings
with open('label_mappings.json', 'r') as f:
label_mappings = json.load(f)
id2label = {int(k): v for k, v in label_mappings['id2label'].items()}
def extract_entities(text):
# Tokenize
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])
# Predict
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
# Extract entities
entities = []
current_entity = None
current_tokens = []
for token, pred_id in zip(tokens, predictions[0]):
label = id2label[pred_id.item()]
if label.startswith('B-'):
# Save previous entity if exists
if current_entity:
entities.append({
'type': current_entity,
'text': tokenizer.convert_tokens_to_string(current_tokens)
})
# Start new entity
current_entity = label[2:]
current_tokens = [token]
elif label.startswith('I-') and current_entity == label[2:]:
# Continue current entity
current_tokens.append(token)
else:
# End current entity
if current_entity:
entities.append({
'type': current_entity,
'text': tokenizer.convert_tokens_to_string(current_tokens)
})
current_entity = None
current_tokens = []
# Don't forget last entity
if current_entity:
entities.append({
'type': current_entity,
'text': tokenizer.convert_tokens_to_string(current_tokens)
})
return entities
# Example usage
text = "bật đèn phòng khách lúc 7 giờ tối"
entities = extract_entities(text)
print(f"Input: {text}")
print(f"Entities: {entities}")
```
### Using Pipeline
```python
from transformers import pipeline
# Load NER pipeline
ner = pipeline(
"token-classification",
model="ntgiaky/phobert-ner-smart-home",
aggregation_strategy="simple"
)
# Extract entities
result = ner("tắt quạt phòng ngủ sau 10 phút")
print(result)
```
## Integration with Intent Classification
For a complete NLU pipeline:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
# Load with PhoBERT tokenizer explicitly
tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
model = AutoModelForTokenClassification.from_pretrained(
"ntgiaky/phobert-ner-smart-home",
ignore_mismatched_sizes=True # Add this if needed
)
# Create pipeline with explicit tokenizer
ner = pipeline(
"token-classification",
model=model,
tokenizer=tokenizer,
aggregation_strategy="simple"
)
# Test
result = ner("bật đèn phòng khách")
print(result)
```
## Example Outputs
```python
# Input: "bật đèn phòng khách"
# [{'entity_group': 'living_space', 'score': np.float32(0.97212785), 'word': 'đèn', 'start': None, 'end': None},
# {'entity_group': 'duration', 'score': np.float32(0.9332844), 'word': 'phòng khách', 'start': None, 'end': None}]
```
## Citation
If you use this model, please cite:
```bibtex
@misc{phobert-ner-smart-home-2025,
author = {Trần Quang Huy and Nguyễn Trần Gia Kỳ},
title = {PhoBERT Fine-tuned for Vietnamese Smart Home NER},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face Model Hub},
howpublished = {\url{https://huggingface.co/ntgiaky/ner-smart-home}}
}
```
## Authors
- **Trần Quang Huy**
- **Nguyễn Trần Gia Kỳ**
## License
This model is released under the MIT License. |