ntseng commited on
Commit
05b42d0
·
verified ·
1 Parent(s): 4d92f2c

Update README

Browse files
Files changed (1) hide show
  1. README.md +64 -140
README.md CHANGED
@@ -1,15 +1,28 @@
1
  ---
2
  library_name: peft
3
  base_model: models/mistralai_Mistral-7B-Instruct-v0.2
 
 
 
 
 
4
  ---
 
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
9
 
 
 
10
 
11
 
12
  ## Model Details
 
 
13
 
14
  ### Model Description
15
 
@@ -33,133 +46,71 @@ base_model: models/mistralai_Mistral-7B-Instruct-v0.2
33
  - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
- ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
  #### Preprocessing [optional]
89
 
90
  [More Information Needed]
91
 
92
 
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
  [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
  [More Information Needed]
@@ -172,33 +123,6 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
202
  ### Framework versions
203
 
204
  - PEFT 0.7.1
 
1
  ---
2
  library_name: peft
3
  base_model: models/mistralai_Mistral-7B-Instruct-v0.2
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - education
9
  ---
10
+ # mistralai_Mistral-7B-Instruct-v0_2_student_answer_train_examples_mistral_0416
11
+ * LoRAs weights for Mistral-7b-Instruct-v0_2
12
 
 
13
 
14
+ # Noteworthy changes:
15
+ * reduced training hyperparams: epochs=3 (previously 4)
16
+ * new training prompt: "Teenager students write in simple sentences.
17
+ You are a teenager student, and please answer the following question. {training example}"
18
 
19
+ * old training prompt: "Teenager students write in simple sentences [with typos and grammar errors].
20
+ You are a teenager student, and please answer the following question. {training example}"
21
 
22
 
23
  ## Model Details
24
+ Fine-tuned model that talks like middle school students, using simple vocabulary and grammar.
25
+ * Trained on student Q&As physics topics including pulley/ramp examples that discuss work, force, and etc.
26
 
27
  ### Model Description
28
 
 
46
  - **Paper [optional]:** [More Information Needed]
47
  - **Demo [optional]:** [More Information Needed]
48
 
49
+ ## Model Details
50
+ Fine-tuned model to talk like middle school students, using typos/grammar errors.
51
+ Trained on student Q&As physics topics including pulley/ramp examples that discuss work, force, and etc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
 
53
 
54
+ - **Developed by:** Nora T
55
+ - **Finetuned from model:** mistralai_Mistral-7B-Instruct-v0.2
56
+ - **Repository:** [More Information Needed]
57
+ - **Paper [optional]:** [More Information Needed]
58
+ - **Demo [optional]:** [More Information Needed]
59
 
60
+ ## How to Get Started:
61
+ 1. Load Mistral model first:
62
+ ```
63
+ from peft import PeftModel # for fine-tuning
64
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, GenerationConfig, GPTQConfig, BitsAndBytesConfig
65
+
66
+ model_name_or_path = "mistralai/Mistral-7B-Instruct-v0.2"
67
+ nf4_config = BitsAndBytesConfig( # quantization 4-bit
68
+ load_in_4bit=True,
69
+ bnb_4bit_quant_type="nf4",
70
+ bnb_4bit_use_double_quant=True,
71
+ bnb_4bit_compute_dtype=torch.bfloat16
72
+ )
73
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
74
+ device_map="auto",
75
+ trust_remote_code=False,
76
+ quantization_config=nf4_config,
77
+ revision="main")
78
+
79
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
80
+ ```
81
+
82
+ 2. Load in LoRA weights:
83
+ ```
84
+ lora_model_path = "{path_to_loras_folder}/mistralai_Mistral-7B-Instruct-v0.2-testgen-LoRAs" # load loras
85
+ model = PeftModel.from_pretrained(
86
+ model, lora_model_path, torch_dtype=torch.float16, force_download=True,
87
+ )
88
+
89
+ ```
90
+
91
+ ## Training Hyperparams
92
+ * LoRA Rank: 128
93
+ * LoRA Alpha: 32
94
+ * Batch Size: 64
95
+ * Cutoff Length: 256
96
+ * Learning rate: 3e-4
97
+ * Epochs: 3
98
+ * LoRA Dropout: 0.05
99
 
100
  ### Training Data
101
+ Trained on raw text file
 
 
 
 
 
 
 
102
 
103
  #### Preprocessing [optional]
104
 
105
  [More Information Needed]
106
 
107
 
108
+ ## Technical Specifications
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
  ### Model Architecture and Objective
111
 
112
  [More Information Needed]
113
 
 
 
 
 
114
  #### Hardware
115
 
116
  [More Information Needed]
 
123
 
124
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
  ### Framework versions
127
 
128
  - PEFT 0.7.1