Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,615 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
-
|
| 23 |
-
-
|
| 24 |
-
|
| 25 |
-
-
|
| 26 |
-
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
[
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
[
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
[
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- multilingual
|
| 5 |
+
tags:
|
| 6 |
+
- nlp
|
| 7 |
+
base_model: OpenGVLab/InternVL2_5-1B
|
| 8 |
+
pipeline_tag: text-generation
|
| 9 |
+
inference: true
|
| 10 |
---
|
| 11 |
|
| 12 |
+
# NuExtract-2-2B by NuMind 🔥
|
| 13 |
+
|
| 14 |
+
NuExtract 2.0 is a family of models trained specifically for structured information extraction tasks. It supports both multimodal inputs and is multilingual.
|
| 15 |
+
|
| 16 |
+
We provide several versions of different sizes, all based on the InternVL2.5 family.
|
| 17 |
+
| Model Size | Model Name | Base Model | Huggingface Link |
|
| 18 |
+
|------------|------------|------------|------------------|
|
| 19 |
+
| 2B | NuExtract-2.0-2B | [InternVL2_5-2B](https://huggingface.co/OpenGVLab/InternVL2_5-2B) | [NuExtract-2-2B](https://huggingface.co/numind/NuExtract-2-2B) |
|
| 20 |
+
| 4B | NuExtract-2.0-4B | [InternVL2_5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B) | [NuExtract-2-4B](https://huggingface.co/numind/NuExtract-2-4B) |
|
| 21 |
+
| 8B | NuExtract-2.0-8B | [InternVL2_5-8B](https://huggingface.co/OpenGVLab/InternVL2_5-8B) | [NuExtract-2-8B](https://huggingface.co/numind/NuExtract-2-8B) |
|
| 22 |
+
|
| 23 |
+
## Overview
|
| 24 |
+
|
| 25 |
+
To use the model, provide an input text/image and a JSON template describing the information you need to extract. The template should be a JSON object, specifying field names and their expected type.
|
| 26 |
+
|
| 27 |
+
Support types include:
|
| 28 |
+
* `verbatim-string` - instructs the model to extract text that is present verbatim in the input.
|
| 29 |
+
* `string` - a generic string field that can incorporate paraphrasing/abstraction.
|
| 30 |
+
* `integer` - a whole number.
|
| 31 |
+
* `number` - a whole or decimal number.
|
| 32 |
+
* `date-time` - ISO formatted date.
|
| 33 |
+
* Array of any of the above types (e.g. `["string"]`)
|
| 34 |
+
* `enum` - a choice from set of possible answers (represented in template as an array of options, e.g. `["yes", "no", "maybe"]`).
|
| 35 |
+
* `multi-label` - an enum that can have multiple possible answers (represented in template as a double-wrapped array, e.g. `[["A", "B", "C"]]`).
|
| 36 |
+
|
| 37 |
+
If the model does not identify relevant information for a field, it will return `null` or `[]` (for arrays and multi-labels).
|
| 38 |
+
|
| 39 |
+
The following is an example template:
|
| 40 |
+
```json
|
| 41 |
+
{
|
| 42 |
+
"first_name": "verbatim-string",
|
| 43 |
+
"last_name": "verbatim-string",
|
| 44 |
+
"description": "string",
|
| 45 |
+
"age": "integer",
|
| 46 |
+
"gpa": "number",
|
| 47 |
+
"birth_date": "date-time",
|
| 48 |
+
"nationality": ["France", "England", "Japan", "USA", "China"],
|
| 49 |
+
"languages_spoken": [["English", "French", "Japanese", "Mandarin", "Spanish"]]
|
| 50 |
+
}
|
| 51 |
+
```
|
| 52 |
+
An example output:
|
| 53 |
+
```json
|
| 54 |
+
{
|
| 55 |
+
"first_name": "Susan",
|
| 56 |
+
"last_name": "Smith",
|
| 57 |
+
"description": "A student studying computer science.",
|
| 58 |
+
"age": 20,
|
| 59 |
+
"gpa": 3.7,
|
| 60 |
+
"birth_date": "2005-03-01",
|
| 61 |
+
"nationality": "England",
|
| 62 |
+
"languages_spoken": ["English", "French"]
|
| 63 |
+
}
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to many extraction tasks.
|
| 67 |
+
|
| 68 |
+
## Inference
|
| 69 |
+
|
| 70 |
+
Use the following code to handle loading and preprocessing of input data:
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
import torch
|
| 74 |
+
import torchvision.transforms as T
|
| 75 |
+
from PIL import Image
|
| 76 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 77 |
+
|
| 78 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 79 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 80 |
+
|
| 81 |
+
def build_transform(input_size):
|
| 82 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
| 83 |
+
transform = T.Compose([
|
| 84 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
| 85 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
| 86 |
+
T.ToTensor(),
|
| 87 |
+
T.Normalize(mean=MEAN, std=STD)
|
| 88 |
+
])
|
| 89 |
+
return transform
|
| 90 |
+
|
| 91 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 92 |
+
best_ratio_diff = float('inf')
|
| 93 |
+
best_ratio = (1, 1)
|
| 94 |
+
area = width * height
|
| 95 |
+
for ratio in target_ratios:
|
| 96 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 97 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 98 |
+
if ratio_diff < best_ratio_diff:
|
| 99 |
+
best_ratio_diff = ratio_diff
|
| 100 |
+
best_ratio = ratio
|
| 101 |
+
elif ratio_diff == best_ratio_diff:
|
| 102 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 103 |
+
best_ratio = ratio
|
| 104 |
+
return best_ratio
|
| 105 |
+
|
| 106 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
| 107 |
+
orig_width, orig_height = image.size
|
| 108 |
+
aspect_ratio = orig_width / orig_height
|
| 109 |
+
|
| 110 |
+
# calculate the existing image aspect ratio
|
| 111 |
+
target_ratios = set(
|
| 112 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 113 |
+
i * j <= max_num and i * j >= min_num)
|
| 114 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 115 |
+
|
| 116 |
+
# find the closest aspect ratio to the target
|
| 117 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
| 118 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 119 |
+
|
| 120 |
+
# calculate the target width and height
|
| 121 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 122 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 123 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 124 |
+
|
| 125 |
+
# resize the image
|
| 126 |
+
resized_img = image.resize((target_width, target_height))
|
| 127 |
+
processed_images = []
|
| 128 |
+
for i in range(blocks):
|
| 129 |
+
box = (
|
| 130 |
+
(i % (target_width // image_size)) * image_size,
|
| 131 |
+
(i // (target_width // image_size)) * image_size,
|
| 132 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
| 133 |
+
((i // (target_width // image_size)) + 1) * image_size
|
| 134 |
+
)
|
| 135 |
+
# split the image
|
| 136 |
+
split_img = resized_img.crop(box)
|
| 137 |
+
processed_images.append(split_img)
|
| 138 |
+
assert len(processed_images) == blocks
|
| 139 |
+
if use_thumbnail and len(processed_images) != 1:
|
| 140 |
+
thumbnail_img = image.resize((image_size, image_size))
|
| 141 |
+
processed_images.append(thumbnail_img)
|
| 142 |
+
return processed_images
|
| 143 |
+
|
| 144 |
+
def load_image(image_file, input_size=448, max_num=12):
|
| 145 |
+
image = Image.open(image_file).convert('RGB')
|
| 146 |
+
transform = build_transform(input_size=input_size)
|
| 147 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 148 |
+
pixel_values = [transform(image) for image in images]
|
| 149 |
+
pixel_values = torch.stack(pixel_values)
|
| 150 |
+
return pixel_values
|
| 151 |
+
|
| 152 |
+
def prepare_inputs(messages, image_paths, tokenizer, device='cuda', dtype=torch.bfloat16):
|
| 153 |
+
"""
|
| 154 |
+
Prepares multi-modal input components (supports multiple images per prompt).
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
messages: List of input messages/prompts (strings or dicts with 'role' and 'content')
|
| 158 |
+
image_paths: List where each element is either None (for text-only) or a list of image paths
|
| 159 |
+
tokenizer: The tokenizer to use for applying chat templates
|
| 160 |
+
device: Device to place tensors on ('cuda', 'cpu', etc.)
|
| 161 |
+
dtype: Data type for image tensors (default: torch.bfloat16)
|
| 162 |
+
|
| 163 |
+
Returns:
|
| 164 |
+
dict: Contains 'prompts', 'pixel_values_list', and 'num_patches_list' ready for the model
|
| 165 |
+
"""
|
| 166 |
+
# Make sure image_paths list is at least as long as messages
|
| 167 |
+
if len(image_paths) < len(messages):
|
| 168 |
+
# Pad with None for text-only messages
|
| 169 |
+
image_paths = image_paths + [None] * (len(messages) - len(image_paths))
|
| 170 |
+
|
| 171 |
+
# Process images and collect patch information
|
| 172 |
+
loaded_images = []
|
| 173 |
+
num_patches_list = []
|
| 174 |
+
for paths in image_paths:
|
| 175 |
+
if paths and isinstance(paths, list) and len(paths) > 0:
|
| 176 |
+
# Load each image in this prompt
|
| 177 |
+
prompt_images = []
|
| 178 |
+
prompt_patches = []
|
| 179 |
+
|
| 180 |
+
for path in paths:
|
| 181 |
+
# Load the image
|
| 182 |
+
img = load_image(path).to(dtype=dtype, device=device)
|
| 183 |
+
|
| 184 |
+
# Ensure img has correct shape [patches, C, H, W]
|
| 185 |
+
if len(img.shape) == 3: # [C, H, W] -> [1, C, H, W]
|
| 186 |
+
img = img.unsqueeze(0)
|
| 187 |
+
|
| 188 |
+
prompt_images.append(img)
|
| 189 |
+
# Record the number of patches for this image
|
| 190 |
+
prompt_patches.append(img.shape[0])
|
| 191 |
+
|
| 192 |
+
loaded_images.append(prompt_images)
|
| 193 |
+
num_patches_list.append(prompt_patches)
|
| 194 |
+
else:
|
| 195 |
+
# Text-only prompt
|
| 196 |
+
loaded_images.append(None)
|
| 197 |
+
num_patches_list.append([])
|
| 198 |
+
|
| 199 |
+
# Create the concatenated pixel_values_list
|
| 200 |
+
pixel_values_list = []
|
| 201 |
+
for prompt_images in loaded_images:
|
| 202 |
+
if prompt_images:
|
| 203 |
+
# Concatenate all images for this prompt
|
| 204 |
+
pixel_values_list.append(torch.cat(prompt_images, dim=0))
|
| 205 |
+
else:
|
| 206 |
+
# Text-only prompt
|
| 207 |
+
pixel_values_list.append(None)
|
| 208 |
+
|
| 209 |
+
# Format messages for the model
|
| 210 |
+
if all(isinstance(m, str) for m in messages):
|
| 211 |
+
# Simple string messages: convert to chat format
|
| 212 |
+
batch_messages = [
|
| 213 |
+
[{"role": "user", "content": message}]
|
| 214 |
+
for message in messages
|
| 215 |
+
]
|
| 216 |
+
else:
|
| 217 |
+
# Assume messages are already in the right format
|
| 218 |
+
batch_messages = messages
|
| 219 |
+
|
| 220 |
+
# Apply chat template
|
| 221 |
+
prompts = tokenizer.apply_chat_template(
|
| 222 |
+
batch_messages,
|
| 223 |
+
tokenize=False,
|
| 224 |
+
add_generation_prompt=True
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
return {
|
| 228 |
+
'prompts': prompts,
|
| 229 |
+
'pixel_values_list': pixel_values_list,
|
| 230 |
+
'num_patches_list': num_patches_list
|
| 231 |
+
}
|
| 232 |
+
|
| 233 |
+
def construct_message(text, template, examples=None):
|
| 234 |
+
"""
|
| 235 |
+
Construct the individual NuExtract message texts, prior to chat template formatting.
|
| 236 |
+
"""
|
| 237 |
+
# add few-shot examples if needed
|
| 238 |
+
if examples is not None and len(examples) > 0:
|
| 239 |
+
icl = "# Examples:\n"
|
| 240 |
+
for row in examples:
|
| 241 |
+
icl += f"## Input:\n{row['input']}\n## Output:\n{row['output']}\n"
|
| 242 |
+
else:
|
| 243 |
+
icl = ""
|
| 244 |
+
|
| 245 |
+
return f"""# Template:\n{template}\n{icl}# Context:\n{text}"""
|
| 246 |
+
```
|
| 247 |
+
|
| 248 |
+
To handle inference:
|
| 249 |
+
|
| 250 |
+
```python
|
| 251 |
+
IMG_START_TOKEN='<img>'
|
| 252 |
+
IMG_END_TOKEN='</img>'
|
| 253 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'
|
| 254 |
+
|
| 255 |
+
def nuextract_generate(model, tokenizer, prompts, generation_config, pixel_values_list=None, num_patches_list=None):
|
| 256 |
+
"""
|
| 257 |
+
Generate responses for a batch of NuExtract inputs.
|
| 258 |
+
Support for multiple and varying numbers of images per prompt.
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
model: The vision-language model
|
| 262 |
+
tokenizer: The tokenizer for the model
|
| 263 |
+
pixel_values_list: List of tensor batches, one per prompt
|
| 264 |
+
Each batch has shape [num_images, channels, height, width] or None for text-only prompts
|
| 265 |
+
prompts: List of text prompts
|
| 266 |
+
generation_config: Configuration for text generation
|
| 267 |
+
num_patches_list: List of lists, each containing patch counts for images in a prompt
|
| 268 |
+
|
| 269 |
+
Returns:
|
| 270 |
+
List of generated responses
|
| 271 |
+
"""
|
| 272 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
| 273 |
+
model.img_context_token_id = img_context_token_id
|
| 274 |
+
|
| 275 |
+
# Replace all image placeholders with appropriate tokens
|
| 276 |
+
modified_prompts = []
|
| 277 |
+
total_image_files = 0
|
| 278 |
+
total_patches = 0
|
| 279 |
+
image_containing_prompts = []
|
| 280 |
+
for idx, prompt in enumerate(prompts):
|
| 281 |
+
# check if this prompt has images
|
| 282 |
+
has_images = (pixel_values_list and
|
| 283 |
+
idx < len(pixel_values_list) and
|
| 284 |
+
pixel_values_list[idx] is not None and
|
| 285 |
+
isinstance(pixel_values_list[idx], torch.Tensor) and
|
| 286 |
+
pixel_values_list[idx].shape[0] > 0)
|
| 287 |
+
|
| 288 |
+
if has_images:
|
| 289 |
+
# prompt with image placeholders
|
| 290 |
+
image_containing_prompts.append(idx)
|
| 291 |
+
modified_prompt = prompt
|
| 292 |
+
|
| 293 |
+
patches = num_patches_list[idx] if (num_patches_list and idx < len(num_patches_list)) else []
|
| 294 |
+
num_images = len(patches)
|
| 295 |
+
total_image_files += num_images
|
| 296 |
+
total_patches += sum(patches)
|
| 297 |
+
|
| 298 |
+
# replace each <image> placeholder with image tokens
|
| 299 |
+
for i, num_patches in enumerate(patches):
|
| 300 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * model.num_image_token * num_patches + IMG_END_TOKEN
|
| 301 |
+
modified_prompt = modified_prompt.replace('<image>', image_tokens, 1)
|
| 302 |
+
else:
|
| 303 |
+
# text-only prompt
|
| 304 |
+
modified_prompt = prompt
|
| 305 |
+
|
| 306 |
+
modified_prompts.append(modified_prompt)
|
| 307 |
+
|
| 308 |
+
# process all prompts in a single batch
|
| 309 |
+
tokenizer.padding_side = 'left'
|
| 310 |
+
model_inputs = tokenizer(modified_prompts, return_tensors='pt', padding=True)
|
| 311 |
+
input_ids = model_inputs['input_ids'].to(model.device)
|
| 312 |
+
attention_mask = model_inputs['attention_mask'].to(model.device)
|
| 313 |
+
|
| 314 |
+
eos_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>\n".strip())
|
| 315 |
+
generation_config['eos_token_id'] = eos_token_id
|
| 316 |
+
|
| 317 |
+
# prepare pixel values
|
| 318 |
+
flattened_pixel_values = None
|
| 319 |
+
if image_containing_prompts:
|
| 320 |
+
# collect and concatenate all image tensors
|
| 321 |
+
all_pixel_values = []
|
| 322 |
+
for idx in image_containing_prompts:
|
| 323 |
+
all_pixel_values.append(pixel_values_list[idx])
|
| 324 |
+
|
| 325 |
+
flattened_pixel_values = torch.cat(all_pixel_values, dim=0)
|
| 326 |
+
print(f"Processing batch with {len(prompts)} prompts, {total_image_files} actual images, and {total_patches} total patches")
|
| 327 |
+
else:
|
| 328 |
+
print(f"Processing text-only batch with {len(prompts)} prompts")
|
| 329 |
+
|
| 330 |
+
# generate outputs
|
| 331 |
+
outputs = model.generate(
|
| 332 |
+
pixel_values=flattened_pixel_values, # will be None for text-only prompts
|
| 333 |
+
input_ids=input_ids,
|
| 334 |
+
attention_mask=attention_mask,
|
| 335 |
+
**generation_config
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
# Decode responses
|
| 339 |
+
responses = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 340 |
+
|
| 341 |
+
return responses
|
| 342 |
+
```
|
| 343 |
+
|
| 344 |
+
To load the model:
|
| 345 |
+
|
| 346 |
+
```python
|
| 347 |
+
import torch
|
| 348 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 349 |
+
|
| 350 |
+
model_name = ""
|
| 351 |
+
|
| 352 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, padding_side='left')
|
| 353 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,
|
| 354 |
+
torch_dtype=torch.bfloat16,
|
| 355 |
+
attn_implementation="flash_attention_2" # we recommend using flash attention
|
| 356 |
+
).to("cuda")
|
| 357 |
+
```
|
| 358 |
+
|
| 359 |
+
Simple 0-shot text-only example:
|
| 360 |
+
```python
|
| 361 |
+
template = """{"names": ["verbatim-string"]}"""
|
| 362 |
+
text = "John went to the restaurant with Mary. James went to the cinema."
|
| 363 |
+
|
| 364 |
+
input_messages = [construct_message(text, template)]
|
| 365 |
+
|
| 366 |
+
input_content = prepare_inputs(
|
| 367 |
+
messages=input_messages,
|
| 368 |
+
image_paths=[],
|
| 369 |
+
tokenizer=tokenizer,
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
|
| 373 |
+
|
| 374 |
+
with torch.no_grad():
|
| 375 |
+
result = nuextract_generate(
|
| 376 |
+
model=model,
|
| 377 |
+
tokenizer=tokenizer,
|
| 378 |
+
prompts=input_content['prompts'],
|
| 379 |
+
pixel_values_list=input_content['pixel_values_list'],
|
| 380 |
+
num_patches_list=input_content['num_patches_list'],
|
| 381 |
+
generation_config=generation_config
|
| 382 |
+
)
|
| 383 |
+
for y in result:
|
| 384 |
+
print(y)
|
| 385 |
+
# {"names": ["John", "Mary", "James"]}
|
| 386 |
+
```
|
| 387 |
+
|
| 388 |
+
Text-only input with an in-context example:
|
| 389 |
+
```python
|
| 390 |
+
template = """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}"""
|
| 391 |
+
text = "John went to the restaurant with Mary. James went to the cinema."
|
| 392 |
+
examples = [
|
| 393 |
+
{
|
| 394 |
+
"input": "Stephen is the manager at Susan's store.",
|
| 395 |
+
"output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
|
| 396 |
+
}
|
| 397 |
+
]
|
| 398 |
+
|
| 399 |
+
input_messages = [construct_message(text, template, examples)]
|
| 400 |
+
|
| 401 |
+
input_content = prepare_inputs(
|
| 402 |
+
messages=input_messages,
|
| 403 |
+
image_paths=[],
|
| 404 |
+
tokenizer=tokenizer,
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
|
| 408 |
+
|
| 409 |
+
with torch.no_grad():
|
| 410 |
+
result = nuextract_generate(
|
| 411 |
+
model=model,
|
| 412 |
+
tokenizer=tokenizer,
|
| 413 |
+
prompts=input_content['prompts'],
|
| 414 |
+
pixel_values_list=input_content['pixel_values_list'],
|
| 415 |
+
num_patches_list=input_content['num_patches_list'],
|
| 416 |
+
generation_config=generation_config
|
| 417 |
+
)
|
| 418 |
+
for y in result:
|
| 419 |
+
print(y)
|
| 420 |
+
# {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
|
| 421 |
+
```
|
| 422 |
+
|
| 423 |
+
Example with image input and an in-context example. Image inputs should use `<image>` placeholder instead of text and image paths should be provided in a list in order of appearance in the prompt (in this example `0.jpg` will be for the in-context example and `1.jpg` for the true input).
|
| 424 |
+
```python
|
| 425 |
+
template = """{"store": "verbatim-string"}"""
|
| 426 |
+
text = "<image>"
|
| 427 |
+
examples = [
|
| 428 |
+
{
|
| 429 |
+
"input": "<image>",
|
| 430 |
+
"output": """{"store": "Walmart"}"""
|
| 431 |
+
}
|
| 432 |
+
]
|
| 433 |
+
|
| 434 |
+
input_messages = [construct_message(text, template, examples)]
|
| 435 |
+
|
| 436 |
+
images = [
|
| 437 |
+
["0.jpg", "1.jpg"]
|
| 438 |
+
]
|
| 439 |
+
|
| 440 |
+
input_content = prepare_inputs(
|
| 441 |
+
messages=input_messages,
|
| 442 |
+
image_paths=images,
|
| 443 |
+
tokenizer=tokenizer,
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
|
| 447 |
+
|
| 448 |
+
with torch.no_grad():
|
| 449 |
+
result = nuextract_generate(
|
| 450 |
+
model=model,
|
| 451 |
+
tokenizer=tokenizer,
|
| 452 |
+
prompts=input_content['prompts'],
|
| 453 |
+
pixel_values_list=input_content['pixel_values_list'],
|
| 454 |
+
num_patches_list=input_content['num_patches_list'],
|
| 455 |
+
generation_config=generation_config
|
| 456 |
+
)
|
| 457 |
+
for y in result:
|
| 458 |
+
print(y)
|
| 459 |
+
# {"store": "Trader Joe's"}
|
| 460 |
+
```
|
| 461 |
+
|
| 462 |
+
Multi-modal batched input:
|
| 463 |
+
```python
|
| 464 |
+
inputs = [
|
| 465 |
+
# image input with no ICL examples
|
| 466 |
+
{
|
| 467 |
+
"text": "<image>",
|
| 468 |
+
"template": """{"store_name": "verbatim-string"}""",
|
| 469 |
+
"examples": None,
|
| 470 |
+
},
|
| 471 |
+
# image input with 1 ICL example
|
| 472 |
+
{
|
| 473 |
+
"text": "<image>",
|
| 474 |
+
"template": """{"store_name": "verbatim-string"}""",
|
| 475 |
+
"examples": [
|
| 476 |
+
{
|
| 477 |
+
"input": "<image>",
|
| 478 |
+
"output": """{"store_name": "Walmart"}""",
|
| 479 |
+
}
|
| 480 |
+
],
|
| 481 |
+
},
|
| 482 |
+
# text input with no ICL examples
|
| 483 |
+
{
|
| 484 |
+
"text": "John went to the restaurant with Mary. James went to the cinema.",
|
| 485 |
+
"template": """{"names": ["verbatim-string"]}""",
|
| 486 |
+
"examples": None,
|
| 487 |
+
},
|
| 488 |
+
# text input with ICL example
|
| 489 |
+
{
|
| 490 |
+
"text": "John went to the restaurant with Mary. James went to the cinema.",
|
| 491 |
+
"template": """{"names": ["verbatim-string"], "female_names": ["verbatim-string"]}""",
|
| 492 |
+
"examples": [
|
| 493 |
+
{
|
| 494 |
+
"input": "Stephen is the manager at Susan's store.",
|
| 495 |
+
"output": """{"names": ["STEPHEN", "SUSAN"], "female_names": ["SUSAN"]}"""
|
| 496 |
+
}
|
| 497 |
+
],
|
| 498 |
+
},
|
| 499 |
+
]
|
| 500 |
+
|
| 501 |
+
input_messages = [
|
| 502 |
+
construct_message(
|
| 503 |
+
x["text"],
|
| 504 |
+
x["template"],
|
| 505 |
+
x["examples"]
|
| 506 |
+
) for x in inputs
|
| 507 |
+
]
|
| 508 |
+
|
| 509 |
+
images = [
|
| 510 |
+
["0.jpg"],
|
| 511 |
+
["0.jpg", "1.jpg"],
|
| 512 |
+
None,
|
| 513 |
+
None
|
| 514 |
+
]
|
| 515 |
+
|
| 516 |
+
input_content = prepare_inputs(
|
| 517 |
+
messages=input_messages,
|
| 518 |
+
image_paths=images,
|
| 519 |
+
tokenizer=tokenizer,
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}
|
| 523 |
+
|
| 524 |
+
with torch.no_grad():
|
| 525 |
+
result = nuextract_generate(
|
| 526 |
+
model=model,
|
| 527 |
+
tokenizer=tokenizer,
|
| 528 |
+
prompts=input_content['prompts'],
|
| 529 |
+
pixel_values_list=input_content['pixel_values_list'],
|
| 530 |
+
num_patches_list=input_content['num_patches_list'],
|
| 531 |
+
generation_config=generation_config
|
| 532 |
+
)
|
| 533 |
+
for y in result:
|
| 534 |
+
print(y)
|
| 535 |
+
# {"store_name": "WAL*MART"}
|
| 536 |
+
# {"store_name": "Trader Joe's"}
|
| 537 |
+
# {"names": ["John", "Mary", "James"]}
|
| 538 |
+
# {"names": ["JOHN", "MARY", "JAMES"], "female_names": ["MARY"]}
|
| 539 |
+
```
|
| 540 |
+
|
| 541 |
+
## Template Generation
|
| 542 |
+
If you want to convert existing schema files you have in other formats (e.g. XML, YAML, etc.) or start from an example, NuExtract 2 models can automatically generate this for you.
|
| 543 |
+
|
| 544 |
+
E.g. convert XML into a NuExtract template:
|
| 545 |
+
```python
|
| 546 |
+
def generate_template(description):
|
| 547 |
+
input_messages = [description]
|
| 548 |
+
input_content = prepare_inputs(
|
| 549 |
+
messages=input_messages,
|
| 550 |
+
image_paths=[],
|
| 551 |
+
tokenizer=tokenizer,
|
| 552 |
+
)
|
| 553 |
+
generation_config = {"do_sample": True, "temperature": 0.4, "max_new_tokens": 256}
|
| 554 |
+
with torch.no_grad():
|
| 555 |
+
result = nuextract_generate(
|
| 556 |
+
model=model,
|
| 557 |
+
tokenizer=tokenizer,
|
| 558 |
+
prompts=input_content['prompts'],
|
| 559 |
+
pixel_values_list=input_content['pixel_values_list'],
|
| 560 |
+
num_patches_list=input_content['num_patches_list'],
|
| 561 |
+
generation_config=generation_config
|
| 562 |
+
)
|
| 563 |
+
return result[0]
|
| 564 |
+
xml_template = """<SportResult>
|
| 565 |
+
<Date></Date>
|
| 566 |
+
<Sport></Sport>
|
| 567 |
+
<Venue></Venue>
|
| 568 |
+
<HomeTeam></HomeTeam>
|
| 569 |
+
<AwayTeam></AwayTeam>
|
| 570 |
+
<HomeScore></HomeScore>
|
| 571 |
+
<AwayScore></AwayScore>
|
| 572 |
+
<TopScorer></TopScorer>
|
| 573 |
+
</SportResult>"""
|
| 574 |
+
result = generate_template(xml_template)
|
| 575 |
+
|
| 576 |
+
print(result)
|
| 577 |
+
# {
|
| 578 |
+
# "SportResult": {
|
| 579 |
+
# "Date": "date-time",
|
| 580 |
+
# "Sport": "verbatim-string",
|
| 581 |
+
# "Venue": "verbatim-string",
|
| 582 |
+
# "HomeTeam": "verbatim-string",
|
| 583 |
+
# "AwayTeam": "verbatim-string",
|
| 584 |
+
# "HomeScore": "integer",
|
| 585 |
+
# "AwayScore": "integer",
|
| 586 |
+
# "TopScorer": "verbatim-string"
|
| 587 |
+
# }
|
| 588 |
+
# }
|
| 589 |
+
```
|
| 590 |
+
|
| 591 |
+
E.g. generate a template from natural language description:
|
| 592 |
+
```python
|
| 593 |
+
text = """Give me relevant info about startup companies mentioned."""
|
| 594 |
+
result = generate_template(text)
|
| 595 |
+
|
| 596 |
+
print(result)
|
| 597 |
+
# {
|
| 598 |
+
# "Startup_Companies": [
|
| 599 |
+
# {
|
| 600 |
+
# "Name": "verbatim-string",
|
| 601 |
+
# "Products": [
|
| 602 |
+
# "string"
|
| 603 |
+
# ],
|
| 604 |
+
# "Location": "verbatim-string",
|
| 605 |
+
# "Company_Type": [
|
| 606 |
+
# "Technology",
|
| 607 |
+
# "Finance",
|
| 608 |
+
# "Health",
|
| 609 |
+
# "Education",
|
| 610 |
+
# "Other"
|
| 611 |
+
# ]
|
| 612 |
+
# }
|
| 613 |
+
# ]
|
| 614 |
+
# }
|
| 615 |
+
```
|