File size: 20,413 Bytes
f818735
 
05bfd61
 
f59852e
05bfd61
f818735
 
f59852e
51e8e8e
 
 
 
f59852e
 
 
 
188db28
05bfd61
 
 
 
 
 
 
f59852e
05bfd61
 
 
 
42339c9
 
 
 
 
 
05bfd61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
---
library_name: transformers
license: mit
base_model:
- Qwen/Qwen2.5-VL-8B-Instruct
pipeline_tag: image-text-to-text
---

<p align="center">
    <a href="https://nuextract.ai/">
        <img src="logo_nuextract.svg" width="200"/>
    </a>
</p>
<p align="center">
        🖥️ <a href="https://nuextract.ai/">API / Platform</a>&nbsp&nbsp | &nbsp&nbsp📑 <a href="https://numind.ai/blog">Blog</a>&nbsp&nbsp | &nbsp&nbsp🗣️ <a href="https://discord.gg/3tsEtJNCDe">Discord</a>
</p>

# NuExtract 2.0 8B by NuMind 🔥

NuExtract 2.0 is a family of models trained specifically for structured information extraction tasks. It supports both multimodal inputs and is multilingual.

We provide several versions of different sizes, all based on pre-trained models from the QwenVL family.
| Model Size | Model Name | Base Model | License | Huggingface Link |
|------------|------------|------------|---------|------------------|
| 2B | NuExtract-2.0-2B | [Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) | MIT | 🤗 [NuExtract-2.0-2B](https://huggingface.co/numind/NuExtract-2.0-2B) |
| 4B | NuExtract-2.0-4B | [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) | Qwen Research License | 🤗 [NuExtract-2.0-4B](https://huggingface.co/numind/NuExtract-2.0-4B) |
| 8B | NuExtract-2.0-8B | [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) | MIT | 🤗 [NuExtract-2.0-8B](https://huggingface.co/numind/NuExtract-2.0-8B) |

❗️Note: `NuExtract-2.0-2B` is based on Qwen2-VL rather than Qwen2.5-VL because the smallest Qwen2.5-VL model (3B) has a more restrictive, non-commercial license. We therefore include `NuExtract-2.0-2B` as a small model option that can be used commercially.

## Benchmark
Performance on collection of ~1,000 diverse extraction examples containing both text and image inputs.
<a href="https://nuextract.ai/">
    <img src="nuextract2_bench.png" width="500"/>
</a>

## Overview

To use the model, provide an input text/image and a JSON template describing the information you need to extract. The template should be a JSON object, specifying field names and their expected type.

Support types include:
* `verbatim-string` - instructs the model to extract text that is present verbatim in the input.
* `string` - a generic string field that can incorporate paraphrasing/abstraction.
* `integer` - a whole number.
* `number` - a whole or decimal number.
* `date-time` - ISO formatted date.
* Array of any of the above types (e.g. `["string"]`)
* `enum` - a choice from set of possible answers (represented in template as an array of options, e.g. `["yes", "no", "maybe"]`).
* `multi-label` - an enum that can have multiple possible answers (represented in template as a double-wrapped array, e.g. `[["A", "B", "C"]]`).

If the model does not identify relevant information for a field, it will return `null` or `[]` (for arrays and multi-labels).

The following is an example template:
```json
{
  "first_name": "verbatim-string",
  "last_name": "verbatim-string",
  "description": "string",
  "age": "integer",
  "gpa": "number",
  "birth_date": "date-time",
  "nationality": ["France", "England", "Japan", "USA", "China"],
  "languages_spoken": [["English", "French", "Japanese", "Mandarin", "Spanish"]]
}
```
An example output:
```json
{
  "first_name": "Susan",
  "last_name": "Smith",
  "description": "A student studying computer science.",
  "age": 20,
  "gpa": 3.7,
  "birth_date": "2005-03-01",
  "nationality": "England",
  "languages_spoken": ["English", "French"]
}
```

⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to many extraction tasks.

## Using NuExtract with 🤗 Transformers

```python
import torch
from transformers import AutoProcessor, AutoModelForVision2Seq

model_name = "numind/NuExtract-2.0-2B"
# model_name = "numind/NuExtract-2.0-8B"

model = AutoModelForVision2Seq.from_pretrained(model_name, 
                                               trust_remote_code=True, 
                                               torch_dtype=torch.bfloat16,
                                               attn_implementation="flash_attention_2",
                                               device_map="auto")
processor = AutoProcessor.from_pretrained(model_name, 
                                          trust_remote_code=True, 
                                          padding_side='left',
                                          use_fast=True)

# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained(model_name, min_pixels=min_pixels, max_pixels=max_pixels)
```

You will need the following function to handle loading of image input data:
```python
def process_all_vision_info(messages, examples=None):
    """
    Process vision information from both messages and in-context examples, supporting batch processing.
    
    Args:
        messages: List of message dictionaries (single input) OR list of message lists (batch input)
        examples: Optional list of example dictionaries (single input) OR list of example lists (batch)
    
    Returns:
        A flat list of all images in the correct order:
        - For single input: example images followed by message images
        - For batch input: interleaved as (item1 examples, item1 input, item2 examples, item2 input, etc.)
        - Returns None if no images were found
    """
    from qwen_vl_utils import process_vision_info, fetch_image
    
    # Helper function to extract images from examples
    def extract_example_images(example_item):
        if not example_item:
            return []
            
        # Handle both list of examples and single example
        examples_to_process = example_item if isinstance(example_item, list) else [example_item]
        images = []
        
        for example in examples_to_process:
            if isinstance(example.get('input'), dict) and example['input'].get('type') == 'image':
                images.append(fetch_image(example['input']))
                
        return images
    
    # Normalize inputs to always be batched format
    is_batch = messages and isinstance(messages[0], list)
    messages_batch = messages if is_batch else [messages]
    is_batch_examples = examples and isinstance(examples, list) and (isinstance(examples[0], list) or examples[0] is None)
    examples_batch = examples if is_batch_examples else ([examples] if examples is not None else None)
    
    # Ensure examples batch matches messages batch if provided
    if examples and len(examples_batch) != len(messages_batch):
        if not is_batch and len(examples_batch) == 1:
            # Single example set for a single input is fine
            pass
        else:
            raise ValueError("Examples batch length must match messages batch length")
    
    # Process all inputs, maintaining correct order
    all_images = []
    for i, message_group in enumerate(messages_batch):
        # Get example images for this input
        if examples and i < len(examples_batch):
            input_example_images = extract_example_images(examples_batch[i])
            all_images.extend(input_example_images)
        
        # Get message images for this input
        input_message_images = process_vision_info(message_group)[0] or []
        all_images.extend(input_message_images)
    
    return all_images if all_images else None
```

E.g. To perform a basic extraction of names from a text document:
```python
template = """{"names": ["string"]}"""
document = "John went to the restaurant with Mary. James went to the cinema."

# prepare the user message content
messages = [{"role": "user", "content": document}]
text = processor.tokenizer.apply_chat_template(
    messages,
    template=template, # template is specified here
    tokenize=False,
    add_generation_prompt=True,
)

print(text)
""""<|im_start|>user
# Template:
{"names": ["string"]}
# Context:
John went to the restaurant with Mary. James went to the cinema.<|im_end|> 
<|im_start|>assistant"""

image_inputs = process_all_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    padding=True,
    return_tensors="pt",
).to("cuda")

# we choose greedy sampling here, which works well for most information extraction tasks
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}

# Inference: Generation of the output
generated_ids = model.generate(
    **inputs,
    **generation_config
)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)

print(output_text)
# ['{"names": ["John", "Mary", "James"]}']
```

<details>
<summary>In-Context Examples</summary>
Sometimes the model might not perform as well as we want because our task is challenging or involves some degree of ambiguity. Alternatively, we may want the model to follow some specific formatting, or just give it a bit more help. In cases like this it can be valuable to provide "in-context examples" to help NuExtract better understand the task.

To do so, we can provide a list examples (dictionaries of input/output pairs). In the example below, we show to the model that we want the extracted names to be in captial letters with `-` on either side (for the sake of illustration). Usually providing multiple examples will lead to better results.
```python
template = """{"names": ["string"]}"""
document = "John went to the restaurant with Mary. James went to the cinema."
examples = [
    {
        "input": "Stephen is the manager at Susan's store.",
        "output": """{"names": ["-STEPHEN-", "-SUSAN-"]}"""
    }
]

messages = [{"role": "user", "content": document}]
text = processor.tokenizer.apply_chat_template(
    messages,
    template=template,
    examples=examples, # examples provided here
    tokenize=False,
    add_generation_prompt=True,
)

image_inputs = process_all_vision_info(messages, examples)
inputs = processor(
    text=[text],
    images=image_inputs,
    padding=True,
    return_tensors="pt",
).to("cuda")

# we choose greedy sampling here, which works well for most information extraction tasks
generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}

# Inference: Generation of the output
generated_ids = model.generate(
    **inputs,
    **generation_config
)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
# ['{"names": ["-JOHN-", "-MARY-", "-JAMES-"]}']
```
</details>

<details>
<summary>Image Inputs</summary>
If we want to give image inputs to NuExtract, instead of text, we simply provide a dictionary specifying the desired image file as the message content, instead of a string. (e.g. `{"type": "image", "image": "file://image.jpg"}`).

You can also specify an image URL (e.g. `{"type": "image", "image": "http://path/to/your/image.jpg"}`) or base64 encoding (e.g. `{"type": "image", "image": "data:image;base64,/9j/..."}`).
```python
template = """{"store": "verbatim-string"}"""
document = {"type": "image", "image": "file://1.jpg"}

messages = [{"role": "user", "content": [document]}]
text = processor.tokenizer.apply_chat_template(
    messages,
    template=template,
    tokenize=False,
    add_generation_prompt=True,
)

image_inputs = process_all_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    padding=True,
    return_tensors="pt",
).to("cuda")

generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}

# Inference: Generation of the output
generated_ids = model.generate(
    **inputs,
    **generation_config
)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
# ['{"store": "Trader Joe\'s"}']
```
</details>

<details>
<summary>Batch Inference</summary>

```python
inputs = [
    # image input with no ICL examples
    {
        "document": {"type": "image", "image": "file://0.jpg"},
        "template": """{"store_name": "verbatim-string"}""",
    },
    # image input with 1 ICL example
    {
        "document": {"type": "image", "image": "file://0.jpg"},
        "template": """{"store_name": "verbatim-string"}""",
        "examples": [
            {
                "input": {"type": "image", "image": "file://1.jpg"},
                "output": """{"store_name": "Trader Joe's"}""",
            }
        ],
    },
    # text input with no ICL examples
    {
        "document": {"type": "text", "text": "John went to the restaurant with Mary. James went to the cinema."},
        "template": """{"names": ["string"]}""",
    },
    # text input with ICL example
    {
        "document": {"type": "text", "text": "John went to the restaurant with Mary. James went to the cinema."},
        "template": """{"names": ["string"]}""",
        "examples": [
            {
                "input": "Stephen is the manager at Susan's store.",
                "output": """{"names": ["STEPHEN", "SUSAN"]}"""
            }
        ],
    },
]

# messages should be a list of lists for batch processing
messages = [
    [
        {
            "role": "user",
            "content": [x['document']],
        }
    ]
    for x in inputs
]

# apply chat template to each example individually
texts = [
    processor.tokenizer.apply_chat_template(
        messages[i],  # Now this is a list containing one message
        template=x['template'],
        examples=x.get('examples', None),
        tokenize=False, 
        add_generation_prompt=True)
    for i, x in enumerate(inputs)
]

image_inputs = process_all_vision_info(messages, [x.get('examples') for x in inputs])
inputs = processor(
    text=texts,
    images=image_inputs,
    padding=True,
    return_tensors="pt",
).to("cuda")

generation_config = {"do_sample": False, "num_beams": 1, "max_new_tokens": 2048}

# Batch Inference
generated_ids = model.generate(**inputs, **generation_config)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_texts = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
for y in output_texts:
    print(y)
# {"store_name": "WAL-MART"}
# {"store_name": "Walmart"}
# {"names": ["John", "Mary", "James"]}
# {"names": ["JOHN", "MARY", "JAMES"]}
```
</details>

<details>
<summary>Template Generation</summary>
If you want to convert existing schema files you have in other formats (e.g. XML, YAML, etc.) or start from an example, NuExtract 2.0 models can automatically generate this for you.

E.g. convert XML into a NuExtract template:
```python
xml_template = """<SportResult>
    <Date></Date>
    <Sport></Sport>
    <Venue></Venue>
    <HomeTeam></HomeTeam>
    <AwayTeam></AwayTeam>
    <HomeScore></HomeScore>
    <AwayScore></AwayScore>
    <TopScorer></TopScorer>
</SportResult>"""

messages = [
        {
            "role": "user",
            "content": [{"type": "text", "text": xml_template}],
        }
    ]

text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True,
)

image_inputs = process_all_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    padding=True,
    return_tensors="pt",
).to("cuda")

generated_ids = model.generate(
    **inputs,
    **generation_config
)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)

print(output_text[0])
# {
#     "Date": "date-time",
#     "Sport": "verbatim-string",
#     "Venue": "verbatim-string",
#     "HomeTeam": "verbatim-string",
#     "AwayTeam": "verbatim-string",
#     "HomeScore": "integer",
#     "AwayScore": "integer",
#     "TopScorer": "verbatim-string"
# }
```

E.g. generate a template from natural language description:
```python
description = "I would like to extract important details from the contract."

messages = [
        {
            "role": "user",
            "content": [{"type": "text", "text": description}],
        }
    ]

text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True,
)

image_inputs = process_all_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    padding=True,
    return_tensors="pt",
).to("cuda")

generated_ids = model.generate(
    **inputs,
    **generation_config
)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)

print(output_text[0])
# {
#     "Contract": {
#         "Title": "verbatim-string",
#         "Description": "verbatim-string",
#         "Terms": [
#             {
#                 "Term": "verbatim-string",
#                 "Description": "verbatim-string"
#             }
#         ],
#         "Date": "date-time",
#         "Signatory": "verbatim-string"
#     }
# }
```
</details>

## Fine-Tuning
You can find a fine-tuning tutorial notebook in the [cookbooks](https://github.com/numindai/nuextract/tree/main/cookbooks) folder of the [GitHub repo](https://github.com/numindai/nuextract/tree/main).

## vLLM Deployment
Run the command below to serve an OpenAI-compatible API:
```bash
vllm serve numind/NuExtract-2.0-8B --trust_remote_code --limit-mm-per-prompt image=6 --chat-template-content-format openai
```
If you encounter memory issues, set `--max-model-len` accordingly.

Send requests to the model as follows:
```python
import json
from openai import OpenAI

openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

chat_response = client.chat.completions.create(
    model="numind/NuExtract-2.0-8B",
    temperature=0,
    messages=[
        {
            "role": "user", 
            "content": [{"type": "text", "text": "Yesterday I went shopping at Bunnings"}],
        },
    ],
    extra_body={
        "chat_template_kwargs": {
            "template": json.dumps(json.loads("""{\"store\": \"verbatim-string\"}"""), indent=4)
        },
    }
)
print("Chat response:", chat_response)
```
For image inputs, structure requests as shown below. Make sure to order the images in `"content"` as they appear in the prompt (i.e. any in-context examples before the main input).
```python
import base64

def encode_image(image_path):
    """
    Encode the image file to base64 string
    """
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

base64_image = encode_image("0.jpg")
base64_image2 = encode_image("1.jpg")

chat_response = client.chat.completions.create(
    model="numind/NuExtract-2.0-8B",
    temperature=0,
    messages=[
        {
            "role": "user", 
            "content": [
                {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}, # first ICL example image
                {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image2}"}}, # real input image
            ],
        },
    ],
    extra_body={
        "chat_template_kwargs": {
            "template": json.dumps(json.loads("""{\"store\": \"verbatim-string\"}"""), indent=4),
            "examples": [
                {
                    "input": "<image>",
                    "output": """{\"store\": \"Walmart\"}"""
                }
            ]
        },
    }
)
print("Chat response:", chat_response)
```