--- base_model: black-forest-labs/FLUX.1-schnell base_model_relation: adapter language: - en library_name: diffusers license: apache-2.0 pipeline_tag: image-to-image tags: - image-to-image - SVDQuant - FLUX.1-schnell - Diffusion - Quantization - ICLR2025 - sketch ---

Nunchaku Logo

# Model Card for nunchaku-flux.1-schnell-pix2pix-turbo ![visual](https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/app/flux.1/sketch.jpg) This repository contains [img2img-turbo](https://github.com/GaParmar/img2img-turbo) LoRAs for both original and Nunchaku-quantized [FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) to translate sketch to images from user prompts. ## Model Details ### Model Description - **Developed by:** Nunchaku Team, CMU Generative Intelligence Lab - **Model type:** image-to-image - **License:** apache-2.0 - **Quantized from model:** [FLUX.1-schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) ### Model Files - [`sketch.safetensors`](./sketch.safetensors): Img2img sketch-to-image LoRA for original FLUX.1-schnell model. - [`svdq-int4-sketch.safetensors`](./svdq-int4-sketch.safetensors): Img2img sketch-to-image LoRA for SVDQuant INT4 FLUX.1-schnell model. ### Model Sources - **Inference Engine:** [nunchaku](https://github.com/nunchaku-tech/nunchaku) - **Training Repo:** [img2img-turbo](https://github.com/GaParmar/img2img-turbo) - **Paper:** [SVDQuant](http://arxiv.org/abs/2411.05007) | [Img2img-Turbo](https://arxiv.org/abs/2403.12036) - **Demo:** [svdquant.mit.edu](https://svdquant.mit.edu) ## Usage See https://github.com/nunchaku-tech/nunchaku/tree/main/app/flux.1/sketch. ## Citation ```bibtex @inproceedings{ li2024svdquant, title={SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models}, author={Li*, Muyang and Lin*, Yujun and Zhang*, Zhekai and Cai, Tianle and Li, Xiuyu and Guo, Junxian and Xie, Enze and Meng, Chenlin and Zhu, Jun-Yan and Han, Song}, booktitle={The Thirteenth International Conference on Learning Representations}, year={2025} } @article{ parmar2024one, title={One-step image translation with text-to-image models}, author={Parmar, Gaurav and Park, Taesung and Narasimhan, Srinivasa and Zhu, Jun-Yan}, journal={arXiv preprint arXiv:2403.12036}, year={2024} } ```