File size: 1,653 Bytes
b3e6d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fa9d88
 
 
 
 
b3e6d53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
language:
- en
library_name: diffusers
license: apache-2.0
pipeline_tag: text-to-image
tags:
- image-generation
- SVDQuant
- Nunchaku
- Diffusion
- Quantization
- ICLR2025

---
<p align="center" style="border-radius: 10px">
  <img src="https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/nunchaku.svg" width="30%" alt="Nunchaku Logo"/>
</p>

<div align="center">
  <a href=https://discord.gg/Wk6PnwX9Sm target="_blank"><img src=https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2FWk6PnwX9Sm%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total height=22px></a>
  <a href=https://huggingface.co/datasets/nunchaku-tech/cdn/resolve/main/nunchaku/assets/wechat.jpg target="_blank"><img src=https://img.shields.io/badge/WeChat-07C160?logo=wechat&logoColor=white height=22px></a>
</div>

# Nunchaku Pre-built Wheels

This repository provides pre-built wheels for [nunchaku](https://github.com/nunchaku-tech/nunchaku) for both Linux and Windows platforms. For detailed information about available wheels, please visit our [GitHub Releases](https://github.com/nunchaku-tech/nunchaku/releases) page.

## Citation

```bibtex
@inproceedings{
  li2024svdquant,
  title={SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models},
  author={Li*, Muyang and Lin*, Yujun and Zhang*, Zhekai and Cai, Tianle and Li, Xiuyu and Guo, Junxian and Xie, Enze and Meng, Chenlin and Zhu, Jun-Yan and Han, Song},
  booktitle={The Thirteenth International Conference on Learning Representations},
  year={2025}
}
```