Update README.md
Browse files
README.md
CHANGED
|
@@ -48,7 +48,7 @@ model-index:
|
|
| 48 |
---
|
| 49 |
# MultiPLCoder-15b
|
| 50 |
|
| 51 |
-
15 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the MultiPL-T dataset.
|
| 52 |
These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml.
|
| 53 |
|
| 54 |
This 15 billion parameter model is the most capable of the MultiPLCoder family. However, it requires a dedicated GPU for inference.
|
|
@@ -78,8 +78,8 @@ model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-15b", revision=
|
|
| 78 |
|
| 79 |
Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation.
|
| 80 |
```py
|
| 81 |
-
toks = tokenizer.encode("-- Fibonacci iterative", return_tensors="pt")
|
| 82 |
-
out = model.generate(toks, use_cache=True, do_sample=True, temperature=0.2, top_p=0.95, max_length=
|
| 83 |
print(tokenizer.decode(out[0], skip_special_tokens=True))
|
| 84 |
```
|
| 85 |
```
|
|
|
|
| 48 |
---
|
| 49 |
# MultiPLCoder-15b
|
| 50 |
|
| 51 |
+
15 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the [MultiPL-T dataset](https://huggingface.co/datasets/nuprl/MultiPL-T).
|
| 52 |
These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml.
|
| 53 |
|
| 54 |
This 15 billion parameter model is the most capable of the MultiPLCoder family. However, it requires a dedicated GPU for inference.
|
|
|
|
| 78 |
|
| 79 |
Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation.
|
| 80 |
```py
|
| 81 |
+
toks = tokenizer.encode("-- Fibonacci iterative", return_tensors="pt").cuda()
|
| 82 |
+
out = model.generate(toks, use_cache=True, do_sample=True, temperature=0.2, top_p=0.95, max_length=256)
|
| 83 |
print(tokenizer.decode(out[0], skip_special_tokens=True))
|
| 84 |
```
|
| 85 |
```
|