nuua commited on
Commit
3c4bf60
โ€ข
1 Parent(s): d41425d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -6
README.md CHANGED
@@ -8,11 +8,11 @@ tags:
8
  - text2text-generation
9
  base_model: google/deplot
10
  ---
11
- # **Ko-Deplot**
12
 
13
- Ko-Deplot is a korean Visual-QA model based on the Google's Pix2Struct architecture. It was fine-tuned from [Deplot](https://huggingface.co/google/deplot), using korean chart image-text pairs.
14
 
15
- Ko-Deplot์€ Google์˜ Pix2Struct ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ•œ๊ตญ์–ด Visual-QA ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. [Deplot](https://huggingface.co/google/deplot) ๋ชจ๋ธ์„ ํ•œ๊ตญ์–ด ์ฐจํŠธ ์ด๋ฏธ์ง€-ํ…์ŠคํŠธ ์Œ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•˜์—ฌ ํŒŒ์ธํŠœ๋‹ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
16
 
17
  - **Developed by:** [NUUA](https://www.nuua.ai/en/)
18
  - **Model type:** Visual Question Answering
@@ -28,8 +28,8 @@ You can run a prediction by querying an input image together with a question as
28
  from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration
29
  from PIL import Image
30
 
31
- processor = Pix2StructProcessor.from_pretrained('nuua/Ko-Deplot')
32
- model = Pix2StructForConditionalGeneration.from_pretrained('nuua/Ko-Deplot')
33
 
34
  IMAGE_PATH = "LOCAL_PATH_TO_IMAGE"
35
  image = Image.open(IMAGE_PATH)
@@ -39,6 +39,19 @@ predictions = model.generate(**inputs, max_new_tokens=512)
39
  print(processor.decode(predictions[0], skip_special_tokens=True))
40
  ```
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  # **Training Details**
43
 
44
  ## Training Data
@@ -61,7 +74,7 @@ The model was first exposed to a short warmup stage, following its [original pap
61
 
62
  ## Hardware
63
 
64
- Ko-Deplot was trained by using A100 80G.
65
 
66
  A100 80G GPU๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•™์Šตํ•˜์˜€์Šต๋‹ˆ๋‹ค.
67
 
 
8
  - text2text-generation
9
  base_model: google/deplot
10
  ---
11
+ # **ko-deplot**
12
 
13
+ ko-deplot is a korean Visual-QA model based on the Google's Pix2Struct architecture. It was fine-tuned from [Deplot](https://huggingface.co/google/deplot), using korean chart image-text pairs.
14
 
15
+ ko-deplot์€ Google์˜ Pix2Struct ๊ตฌ์กฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ํ•œ๊ตญ์–ด Visual-QA ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. [Deplot](https://huggingface.co/google/deplot) ๋ชจ๋ธ์„ ํ•œ๊ตญ์–ด ์ฐจํŠธ ์ด๋ฏธ์ง€-ํ…์ŠคํŠธ ์Œ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•˜์—ฌ ํŒŒ์ธํŠœ๋‹ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
16
 
17
  - **Developed by:** [NUUA](https://www.nuua.ai/en/)
18
  - **Model type:** Visual Question Answering
 
28
  from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration
29
  from PIL import Image
30
 
31
+ processor = Pix2StructProcessor.from_pretrained('nuua/ko-deplot')
32
+ model = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot')
33
 
34
  IMAGE_PATH = "LOCAL_PATH_TO_IMAGE"
35
  image = Image.open(IMAGE_PATH)
 
39
  print(processor.decode(predictions[0], skip_special_tokens=True))
40
  ```
41
 
42
+ # **Tokenizer Details**
43
+ The model's tokenizer vocab was extended from 50,344 to 65,536 tokens using the following:
44
+
45
+ - Complete Korean Jamo
46
+ - [Additional Korean Jamo](http://koreantypography.org/wp-content/uploads/2016/02/kst_12_7_2_06.pdf)
47
+ - Ko-Electra tokens
48
+
49
+ ๋ชจ๋ธ์˜ tokenizer vocab์„ 50344๊ฐœ์—์„œ 65536๊ฐœ๋กœ ์•„๋ž˜๋ฅผ ์ด์šฉํ•˜์—ฌ ํ™•์žฅ์‹œํ‚จ ํ›„ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค:
50
+
51
+ - ์™„์„ฑํ˜• ํ•œ๊ธ€ ์ž๋ชจ
52
+ - [์ถ”๊ฐ€ ์™„์„ฑํ˜• ํ•œ๊ธ€ ์ž๋ชจ](http://koreantypography.org/wp-content/uploads/2016/02/kst_12_7_2_06.pdf)
53
+ - Ko-Electra ํ•œ๊ธ€ ํ† ํฐ
54
+
55
  # **Training Details**
56
 
57
  ## Training Data
 
74
 
75
  ## Hardware
76
 
77
+ ko-deplot was trained by using A100 80G.
78
 
79
  A100 80G GPU๋ฅผ ์ด์šฉํ•˜์—ฌ ํ•™์Šตํ•˜์˜€์Šต๋‹ˆ๋‹ค.
80