Safetensors
custom_code
mranzinger commited on
Commit
b122da1
·
verified ·
1 Parent(s): 61f96fb
adaptor_base.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from argparse import Namespace
9
+ from typing import NamedTuple, Optional
10
+
11
+ import torch
12
+ from torch import nn
13
+ import torch.nn.functional as F
14
+
15
+
16
+ class AdaptorInput(NamedTuple):
17
+ images: torch.Tensor
18
+ summary: torch.Tensor
19
+ features: torch.Tensor
20
+ feature_fmt: str
21
+ patch_size: int
22
+
23
+
24
+ class RadioOutput(NamedTuple):
25
+ summary: torch.Tensor
26
+ features: torch.Tensor
27
+
28
+ def to(self, *args, **kwargs):
29
+ return RadioOutput(
30
+ self.summary.to(*args, **kwargs) if self.summary is not None else None,
31
+ self.features.to(*args, **kwargs) if self.features is not None else None,
32
+ )
33
+
34
+
35
+ class AdaptorBase(nn.Module):
36
+ def forward(self, input: AdaptorInput) -> RadioOutput:
37
+ raise NotImplementedError("Subclasses must implement this!")
adaptor_generic.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from argparse import Namespace
9
+
10
+ import torch
11
+ from torch import nn
12
+ import torch.nn.functional as F
13
+
14
+ from .adaptor_base import AdaptorBase, AdaptorInput, RadioOutput
15
+ from .adaptor_mlp import create_mlp_from_state, create_mlp_from_config
16
+
17
+
18
+ class GenericAdaptor(AdaptorBase):
19
+ def __init__(self, main_config: Namespace, adaptor_config, state, mlp_config=None):
20
+ super().__init__()
21
+
22
+ extra_args = dict()
23
+ ups = None
24
+ ups_rank = None
25
+ if adaptor_config is not None:
26
+ ups = adaptor_config.get('fd_upsample_factor', None)
27
+ ups_rank = adaptor_config.get('fd_upsample_rank', None)
28
+ elif mlp_config is not None:
29
+ ups = mlp_config["feature"].get('upsample_factor', None)
30
+ ups_rank = mlp_config["feature"].get('upsample_rank', None)
31
+ if ups is not None:
32
+ extra_args['upsample_factor'] = ups
33
+ extra_args['upsample_rank'] = ups_rank
34
+
35
+ if state is not None:
36
+ spectral_heads = getattr(main_config, 'spectral_heads', False)
37
+ self.head_mlp = create_mlp_from_state(main_config.mlp_version, state, 'summary.', spectral_weights=spectral_heads)
38
+ self.feat_mlp = create_mlp_from_state(main_config.mlp_version, state, 'feature.', spectral_weights=spectral_heads, **extra_args)
39
+ else:
40
+ assert mlp_config is not None, "Config must not be None if state is None"
41
+
42
+ self.head_mlp = create_mlp_from_config(
43
+ main_config.mlp_version,
44
+ mlp_config["summary"]["input_dim"],
45
+ mlp_config["summary"]["hidden_dim"],
46
+ mlp_config["summary"]["output_dim"],
47
+ mlp_config["summary"]["num_inner"],
48
+ )
49
+ self.feat_mlp = create_mlp_from_config(
50
+ main_config.mlp_version,
51
+ mlp_config["feature"]["input_dim"],
52
+ mlp_config["feature"]["hidden_dim"],
53
+ mlp_config["feature"]["output_dim"],
54
+ mlp_config["feature"]["num_inner"],
55
+ **extra_args
56
+ )
57
+
58
+ def forward(self, input: AdaptorInput) -> RadioOutput:
59
+ # Convert input'd type to the type of the first parameter of the adaptor.
60
+ first_param = next(self.parameters())
61
+ summary = self.head_mlp(input.summary.to(dtype=first_param.dtype)).to(dtype=input.summary.dtype)
62
+ feat = self.feat_mlp(input.features.to(dtype=first_param.dtype), images=input.images, patch_size=input.patch_size).to(dtype=input.features.dtype)
63
+
64
+ if input.feature_fmt == 'NCHW':
65
+ feat = (feat.reshape(feat.shape[0], input.images.shape[-2] // input.patch_size * self.feat_mlp.upsample_factor, input.images.shape[-1] // input.patch_size * self.feat_mlp.upsample_factor, feat.shape[2])
66
+ .permute(0, 3, 1, 2)
67
+ )
68
+
69
+ return RadioOutput(summary, feat)
adaptor_mlp.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ import math
9
+ from typing import Dict, Optional
10
+
11
+ import torch
12
+ from torch import nn
13
+
14
+ from einops import rearrange
15
+ from timm.models.vision_transformer import Block
16
+
17
+ from .enable_spectral_reparam import disable_spectral_reparam, enable_spectral_reparam
18
+
19
+
20
+ class MLP(nn.Module):
21
+ def __init__(self, input_size: int, hidden_size: int, output_size: int,
22
+ num_inner: int = 0, device: torch.device = None, **kwargs):
23
+ super(MLP, self).__init__()
24
+ self.fc1 = nn.Linear(input_size, hidden_size, device=device)
25
+ self.norm = nn.LayerNorm(hidden_size, device=device)
26
+ self.relu = nn.ReLU()
27
+
28
+ inner = []
29
+ for _ in range(num_inner):
30
+ inner.extend([
31
+ nn.Linear(hidden_size, hidden_size, device=device),
32
+ nn.LayerNorm(hidden_size, device=device),
33
+ nn.ReLU(),
34
+ ])
35
+ if inner:
36
+ self.inner = nn.Sequential(*inner)
37
+ else:
38
+ self.inner = nn.Identity()
39
+
40
+ self.fc2 = nn.Linear(hidden_size, output_size, device=device)
41
+
42
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
43
+ x = self.fc1(x)
44
+ x = self.norm(x)
45
+ x = self.relu(x)
46
+ x = self.inner(x)
47
+ x = self.fc2(x)
48
+ return x
49
+
50
+
51
+ class MLP2(nn.Module):
52
+ def __init__(self, input_size: int, hidden_size: int, output_size: int,
53
+ num_inner: int = 0,
54
+ pre_norm: bool = False, device: torch.device = None,
55
+ upsample_factor: int = 1,
56
+ upsample_rank: int = None,
57
+ from_config: bool = False,
58
+ **kwargs):
59
+ super().__init__()
60
+
61
+ self.pre_norm = nn.Sequential(
62
+ nn.LayerNorm(input_size),
63
+ nn.GELU(),
64
+ ) if pre_norm else nn.Identity()
65
+
66
+ self.upsample_factor = upsample_factor
67
+ sq_ups = upsample_factor ** 2
68
+
69
+ self._real_output_dim = output_size // sq_ups
70
+
71
+ # hidden_size *= upsample_factor
72
+ # output_size *= (upsample_factor ** 2)
73
+
74
+ self.fc1 = nn.Linear(input_size, hidden_size, device=device)
75
+
76
+ blocks = []
77
+ for _ in range(num_inner):
78
+ blocks.append(nn.Sequential(
79
+ nn.LayerNorm(hidden_size, device=device),
80
+ nn.GELU(),
81
+ nn.Linear(hidden_size, hidden_size, device=device),
82
+ ))
83
+ self.blocks = nn.ModuleList(blocks)
84
+
85
+ self.final = nn.Sequential(
86
+ nn.LayerNorm(hidden_size, device=device),
87
+ nn.GELU(),
88
+ nn.Linear(hidden_size, output_size, device=device),
89
+ )
90
+
91
+ def forward(self, x: torch.Tensor, images: Optional[torch.Tensor] = None, patch_size: Optional[int] = None) -> torch.Tensor:
92
+ x = self.pre_norm(x)
93
+ x = self.fc1(x)
94
+ for block in self.blocks:
95
+ x = x + block(x)
96
+ x = self.final(x)
97
+
98
+ if self.upsample_factor > 1:
99
+ if images is None:
100
+ raise ValueError(f'`images` cannot be `None` when the head\'s `upsample_factor > 1`!')
101
+ if patch_size is None:
102
+ raise ValueError(f'`patch_size` cannot be `None` when the head\'s `upsample_factor > 1`!')
103
+ h, w = tuple(d // patch_size for d in images.shape[-2:])
104
+ x = rearrange(x, 'b (h w) (u1 u2 c) -> b (h u1 w u2) c',
105
+ h=h, w=w, u1=self.upsample_factor, u2=self.upsample_factor,
106
+ c=self._real_output_dim)
107
+
108
+ return x
109
+
110
+
111
+ MLP_FACTORY = {
112
+ 'v1': MLP,
113
+ 'v2': MLP2,
114
+ }
115
+
116
+
117
+ def strip_prefix(state: Dict[str, torch.Tensor], prefix: str):
118
+ state = {
119
+ k[len(prefix):]: v
120
+ for k, v in state.items()
121
+ if k.startswith(prefix)
122
+ }
123
+ return state
124
+
125
+
126
+ def get_mlp_info_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False):
127
+ state = strip_prefix(state, prefix)
128
+
129
+ weight_suffix = 'weight' if not spectral_weights else 'parametrizations.weight.original'
130
+
131
+ if version == 'v1':
132
+ hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
133
+ output_dim = state[f'fc2.{weight_suffix}'].shape[0]
134
+
135
+ for num_inner in range(1000):
136
+ k = f'inner.{num_inner}.0.weight'
137
+ if k not in state:
138
+ break
139
+ elif version == 'v2':
140
+ hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
141
+ output_dim = state[f'final.2.{weight_suffix}'].shape[0]
142
+
143
+ for num_inner in range(1000):
144
+ k = f'blocks.{num_inner}.0.weight'
145
+ if k not in state:
146
+ break
147
+ else:
148
+ raise ValueError(f'Unsupported MLP version: {version}')
149
+
150
+ return input_dim, hidden_dim, output_dim, num_inner
151
+
152
+
153
+ def create_mlp_from_config(version: str, input_dim: int, hidden_dim: int, output_dim: int, num_inner: int, **kwargs):
154
+ ret: nn.Module = MLP_FACTORY[version](input_dim, hidden_dim, output_dim, num_inner, from_config=True, **kwargs)
155
+
156
+ return ret
157
+
158
+
159
+ def create_mlp_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False, **kwargs):
160
+ state = strip_prefix(state, prefix)
161
+
162
+ input_dim, hidden_dim, output_dim, num_inner = get_mlp_info_from_state(version, state, spectral_weights=spectral_weights)
163
+
164
+ ret: nn.Module = create_mlp_from_config(version, input_dim, hidden_dim, output_dim, num_inner, **kwargs)
165
+
166
+ if spectral_weights:
167
+ enable_spectral_reparam(ret, init_norm_to_current=False, state_dict_guidance=state)
168
+
169
+ ret.load_state_dict(state)
170
+
171
+ if spectral_weights:
172
+ disable_spectral_reparam(ret)
173
+
174
+ return ret
adaptor_registry.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from argparse import Namespace
9
+ from typing import Dict, Any
10
+
11
+ import torch
12
+
13
+ from .adaptor_generic import GenericAdaptor, AdaptorBase
14
+
15
+ dict_t = Dict[str, Any]
16
+ state_t = Dict[str, torch.Tensor]
17
+
18
+
19
+ class AdaptorRegistry:
20
+ def __init__(self):
21
+ self._registry = {}
22
+
23
+ def register_adaptor(self, name):
24
+ def decorator(factory_function):
25
+ if name in self._registry:
26
+ raise ValueError(f"Model '{name}' already registered")
27
+ self._registry[name] = factory_function
28
+ return factory_function
29
+ return decorator
30
+
31
+ def create_adaptor(self, name, main_config: Namespace, adaptor_config: dict_t, state: state_t) -> AdaptorBase:
32
+ if name not in self._registry:
33
+ return GenericAdaptor(main_config, adaptor_config, state)
34
+ return self._registry[name](main_config, adaptor_config, state)
35
+
36
+ # Creating an instance of the registry
37
+ adaptor_registry = AdaptorRegistry()
cls_token.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from typing import Optional
9
+
10
+ import torch
11
+ from torch import nn
12
+
13
+
14
+ class ClsToken(nn.Module):
15
+ def __init__(self, ndim: int,
16
+ num_tokens: int = 1,
17
+ enabled: bool = True,
18
+ register_multiple: Optional[int] = None,
19
+ num_registers: Optional[int] = None,
20
+ ):
21
+ super().__init__()
22
+
23
+ self.ndim = ndim
24
+ self.enabled = enabled
25
+ self.num_registers = 0
26
+ self.num_tokens = num_tokens
27
+ if enabled:
28
+ if num_registers:
29
+ self.num_registers = num_registers
30
+ elif register_multiple:
31
+ self.num_registers = register_multiple - (num_tokens % register_multiple)
32
+
33
+ scale = ndim ** -0.5
34
+ self.token = nn.Parameter(torch.randn(num_tokens + self.num_registers, ndim) * scale)
35
+ else:
36
+ self.token = None
37
+
38
+ self.num_patches = self.num_tokens + self.num_registers
39
+
40
+ def disable(self):
41
+ self.token = None
42
+ self.enabled = False
43
+
44
+ def forward(self, x: torch.Tensor):
45
+ if self.token is None:
46
+ return x
47
+
48
+ token = self.token.unsqueeze(0).expand(x.shape[0], -1, -1)
49
+ x = torch.cat([
50
+ token,
51
+ x,
52
+ ], dim=1)
53
+
54
+ return x
55
+
56
+ def no_weight_decay(self):
57
+ return [
58
+ 'token',
59
+ ]
common.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from dataclasses import dataclass
10
+ from typing import Optional
11
+
12
+ from .radio_model import Resolution
13
+
14
+
15
+ @dataclass
16
+ class RadioResource:
17
+ url: str
18
+ patch_size: int
19
+ max_resolution: int
20
+ preferred_resolution: Resolution
21
+ vitdet_num_windowed: Optional[int] = None
22
+ vitdet_num_global: Optional[int] = None
23
+
24
+
25
+ RESOURCE_MAP = {
26
+ # RADIOv2.5
27
+ "radio_v2.5-b": RadioResource(
28
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-b_half.pth.tar?download=true",
29
+ patch_size=16,
30
+ max_resolution=2048,
31
+ preferred_resolution=(768, 768),
32
+ vitdet_num_global=4,
33
+ ),
34
+ "radio_v2.5-l": RadioResource(
35
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio-v2.5-l_half.pth.tar?download=true",
36
+ patch_size=16,
37
+ max_resolution=2048,
38
+ preferred_resolution=(768, 768),
39
+ vitdet_num_global=4,
40
+ ),
41
+ "radio_v2.5-h": RadioResource(
42
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h.pth.tar?download=true",
43
+ patch_size=16,
44
+ max_resolution=2048,
45
+ preferred_resolution=(768, 768),
46
+ vitdet_num_global=4,
47
+ ),
48
+ "radio_v2.5-h-norm": RadioResource(
49
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-h-norm.pth.tar?download=true",
50
+ patch_size=16,
51
+ max_resolution=2048,
52
+ preferred_resolution=(768, 768),
53
+ vitdet_num_global=4,
54
+ ),
55
+ "radio_v2.5-g": RadioResource(
56
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.5-g.pth.tar?download=true",
57
+ patch_size=14,
58
+ max_resolution=1792,
59
+ preferred_resolution=(896, 896),
60
+ vitdet_num_global=8,
61
+ ),
62
+ # RADIO
63
+ "radio_v2.1": RadioResource(
64
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.1_bf16.pth.tar?download=true",
65
+ patch_size=16,
66
+ max_resolution=2048,
67
+ preferred_resolution=Resolution(432, 432),
68
+ vitdet_num_windowed=5,
69
+ ),
70
+ "radio_v2": RadioResource(
71
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v2.pth.tar?download=true",
72
+ patch_size=16,
73
+ max_resolution=2048,
74
+ preferred_resolution=Resolution(432, 432),
75
+ vitdet_num_windowed=5,
76
+ ),
77
+ "radio_v1": RadioResource(
78
+ "https://huggingface.co/nvidia/RADIO/resolve/main/radio_v1.pth.tar?download=true",
79
+ patch_size=14,
80
+ max_resolution=1050,
81
+ preferred_resolution=Resolution(378, 378),
82
+ ),
83
+ # E-RADIO
84
+ "e-radio_v2": RadioResource(
85
+ "https://huggingface.co/nvidia/RADIO/resolve/main/eradio_v2.pth.tar?download=true",
86
+ patch_size=16,
87
+ max_resolution=2048,
88
+ preferred_resolution=Resolution(512, 512),
89
+ ),
90
+ # C-RADIO
91
+ "c-radio_v3-l": RadioResource(
92
+ "https://huggingface.co/nvidia/C-RADIOv3-L/resolve/main/c-radio-v3_l_half.pth.tar?download=true",
93
+ patch_size=16,
94
+ max_resolution=2048,
95
+ preferred_resolution=Resolution(512, 512),
96
+ ),
97
+ }
98
+
99
+ DEFAULT_VERSION = "radio_v2.5-h"
config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "adaptor_configs": {},
3
+ "adaptor_names": null,
4
+ "architectures": [
5
+ "RADIOModel"
6
+ ],
7
+ "args": {
8
+ "aa": null,
9
+ "amp": true,
10
+ "amp_dtype": "bfloat16",
11
+ "amp_impl": "native",
12
+ "aug_repeats": 0,
13
+ "aug_splits": 0,
14
+ "bn_eps": null,
15
+ "bn_momentum": null,
16
+ "cache_dir": null,
17
+ "channels_last": false,
18
+ "checkpoint_hist": 10,
19
+ "chk_keep_forever": 100,
20
+ "class_map": "",
21
+ "clip_grad": null,
22
+ "clip_mode": "norm",
23
+ "cls_token_per_teacher": true,
24
+ "coco_annotations_file": "/datasets/coco2017-adlsa/annotations/captions_val2017.json",
25
+ "coco_image_dir": "/datasets/coco2017-adlsa/val2017",
26
+ "color_jitter": 0.4,
27
+ "cooldown_epochs": 0,
28
+ "cpe_max_size": 2048,
29
+ "cpe_num_registers": 4,
30
+ "crd_loss": false,
31
+ "crd_loss_weight": 0.8,
32
+ "crop_pct": null,
33
+ "cutmix": 0.0,
34
+ "cutmix_minmax": null,
35
+ "damp": null,
36
+ "dataset_download": false,
37
+ "debug_full_knn": false,
38
+ "decay_epochs": 90,
39
+ "decay_milestones": [
40
+ 90,
41
+ 180,
42
+ 270
43
+ ],
44
+ "decay_rate": 0.1,
45
+ "depchain": true,
46
+ "detect_anomaly": false,
47
+ "dist_bn": "reduce",
48
+ "dist_norm_weight": 0.0,
49
+ "distributed": true,
50
+ "drop": 0.0,
51
+ "drop_block": null,
52
+ "drop_connect": null,
53
+ "drop_path": null,
54
+ "dtype": "float32",
55
+ "epoch_repeats": 0.0,
56
+ "eval": false,
57
+ "eval_metric": "knn_top1",
58
+ "eval_teacher": false,
59
+ "eval_teacher_only": false,
60
+ "eval_throughput": false,
61
+ "fast_norm": false,
62
+ "fd_loss_fn": "MSE",
63
+ "feature_normalization": "PHI_STANDARDIZE",
64
+ "feature_summarizer": "cls_token",
65
+ "feature_upscale_factor": null,
66
+ "force_new_wandb_id": false,
67
+ "force_spectral_reparam": false,
68
+ "freeze_bn": false,
69
+ "fsdp": false,
70
+ "full_equivariance": false,
71
+ "fuser": "",
72
+ "gp": null,
73
+ "grad_accum_steps": 1,
74
+ "grad_checkpointing": false,
75
+ "head_init_bias": null,
76
+ "head_init_scale": null,
77
+ "head_lr": null,
78
+ "head_warmup": 5,
79
+ "head_weight_decay": 0.01,
80
+ "hflip": 0.5,
81
+ "img_size": null,
82
+ "in_chans": null,
83
+ "initial_checkpoint": null,
84
+ "input_size": null,
85
+ "interpolation": "",
86
+ "layer_decay": null,
87
+ "local_rank": 0,
88
+ "log_interval": 50,
89
+ "log_mlflow": false,
90
+ "log_wandb": true,
91
+ "loss_auto_balance": false,
92
+ "lr_base": 0.1,
93
+ "lr_base_scale": "",
94
+ "lr_base_size": 256,
95
+ "lr_cycle_decay": 0.5,
96
+ "lr_cycle_limit": 1,
97
+ "lr_cycle_mul": 1.0,
98
+ "lr_k_decay": 1.0,
99
+ "lr_noise": null,
100
+ "lr_noise_pct": 0.67,
101
+ "lr_noise_std": 1.0,
102
+ "mean": null,
103
+ "mesa": false,
104
+ "min_lr": 0,
105
+ "mixup": 0.0,
106
+ "mixup_mode": "batch",
107
+ "mixup_off_epoch": 0,
108
+ "mixup_prob": 1.0,
109
+ "mixup_switch_prob": 0.5,
110
+ "mlp_hidden_size": 1520,
111
+ "mlp_num_inner": 2,
112
+ "mlp_version": "v2",
113
+ "model": "vit_large_patch16_v2_224",
114
+ "model_kwargs": {},
115
+ "model_norm": false,
116
+ "momentum": 0.9,
117
+ "no_aug": false,
118
+ "no_custom_validation": false,
119
+ "no_ddp_bb": true,
120
+ "no_knn": false,
121
+ "no_prefetcher": false,
122
+ "no_resume_opt": false,
123
+ "num_classes": null,
124
+ "one_logger_app_tag": "",
125
+ "one_logger_is_baseline": false,
126
+ "one_logger_run_name": "",
127
+ "onelogger": null,
128
+ "opt_betas": null,
129
+ "opt_eps": null,
130
+ "patience_epochs": 10,
131
+ "pin_mem": false,
132
+ "prefetcher": true,
133
+ "pretrained": false,
134
+ "rank": 0,
135
+ "ratio": [
136
+ 0.75,
137
+ 1.3333333333333333
138
+ ],
139
+ "recount": 1,
140
+ "recovery_interval": 0,
141
+ "register_multiple": 0,
142
+ "remode": "pixel",
143
+ "reprob": 0.0,
144
+ "reset_loss_state": true,
145
+ "resplit": false,
146
+ "sample_tracking": false,
147
+ "save_images": false,
148
+ "scale": [
149
+ 0.5,
150
+ 1.0
151
+ ],
152
+ "sched": "cosine",
153
+ "seed": 42,
154
+ "shift_equivariance": true,
155
+ "smoothing": 0.1,
156
+ "spectral_heads": false,
157
+ "spectral_reparam": false,
158
+ "spectral_weight_decay": null,
159
+ "split_bn": false,
160
+ "start_epoch": null,
161
+ "std": null,
162
+ "stream_teachers": true,
163
+ "sync_bn": false,
164
+ "synchronize_step": false,
165
+ "teachers": [
166
+ {
167
+ "fd_normalize": false,
168
+ "feature_distillation": true,
169
+ "input_size": 378,
170
+ "model": "ViT-H-14-378-quickgelu",
171
+ "name": "clip",
172
+ "pretrained": "dfn5b",
173
+ "type": "open_clip",
174
+ "use_summary": true
175
+ },
176
+ {
177
+ "fd_normalize": false,
178
+ "feature_distillation": true,
179
+ "input_size": 432,
180
+ "model": "siglip2-so400m",
181
+ "name": "siglip2",
182
+ "type": "siglip2",
183
+ "use_summary": true
184
+ },
185
+ {
186
+ "fd_normalize": false,
187
+ "feature_distillation": true,
188
+ "input_size": 224,
189
+ "model": "dinov2_vitg14_reg",
190
+ "name": "dino_v2",
191
+ "type": "dino_v2",
192
+ "use_summary": true
193
+ },
194
+ {
195
+ "fd_normalize": false,
196
+ "feature_distillation": true,
197
+ "input_size": 1024,
198
+ "model": "vit-h",
199
+ "name": "sam",
200
+ "type": "sam",
201
+ "use_summary": false
202
+ }
203
+ ],
204
+ "torchcompile": null,
205
+ "torchscript": false,
206
+ "train_interpolation": "random",
207
+ "train_split": "train",
208
+ "tta": 0,
209
+ "use_coco": false,
210
+ "use_multi_epochs_loader": false,
211
+ "val_ema_only": false,
212
+ "val_split": "val",
213
+ "vflip": 0.0,
214
+ "vitdet_version": 1,
215
+ "wandb_entity": "",
216
+ "wandb_id": "",
217
+ "wandb_job_type": "",
218
+ "wandb_name": "",
219
+ "wandb_project": "",
220
+ "warmup_lr": 1e-05,
221
+ "warmup_prefix": false,
222
+ "worker_seeding": "all",
223
+ "workers": 8,
224
+ "world_size": 256
225
+ },
226
+ "auto_map": {
227
+ "AutoConfig": "hf_model.RADIOConfig",
228
+ "AutoModel": "hf_model.RADIOModel"
229
+ },
230
+ "max_resolution": 2048,
231
+ "patch_size": 16,
232
+ "preferred_resolution": [
233
+ 512,
234
+ 512
235
+ ],
236
+ "torch_dtype": "float32",
237
+ "transformers_version": "4.40.1",
238
+ "version": "c-radio_v3-l",
239
+ "vitdet_window_size": null
240
+ }
dual_hybrid_vit.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from logging import getLogger
2
+ from typing import Tuple
3
+
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ from timm.models import register_model
9
+ from timm.models import vision_transformer as tvit
10
+ from timm.models import convnext as tconv
11
+
12
+ from einops import rearrange
13
+
14
+ from . import extra_timm_models as et
15
+
16
+
17
+ class Fuser(nn.Module):
18
+ def __init__(self, src_dim: int, tgt_dim: int, gated: bool = True):
19
+ super().__init__()
20
+ self.gated = gated
21
+
22
+ mid_dim = max(src_dim, tgt_dim) * 2
23
+
24
+ self.fwd = nn.Sequential(
25
+ nn.Conv2d(src_dim, mid_dim, kernel_size=3, stride=1, padding=1),
26
+ nn.GELU(),
27
+ nn.Conv2d(mid_dim, tgt_dim * (2 if gated else 1), kernel_size=3, stride=1, padding=1),
28
+ )
29
+
30
+ def forward(self, src: torch.Tensor, tgt: torch.Tensor) -> torch.Tensor:
31
+ if src.ndim == 3:
32
+ shape = tgt.shape[-2:]
33
+ else:
34
+ shape = src.shape[-2:]
35
+
36
+ nd = shape[0] * shape[1]
37
+
38
+ if src.ndim == 3:
39
+ src = src[:, -nd:].reshape(src.shape[0], src.shape[2], *shape)
40
+
41
+ if tgt.ndim == 3:
42
+ tgt_pre = tgt[:, :-nd]
43
+ tgt = tgt[:, -nd:].reshape(tgt.shape[0], tgt.shape[2], *shape)
44
+ else:
45
+ tgt_pre = None
46
+
47
+ pred = self.fwd(src)
48
+
49
+ if self.gated:
50
+ g, pred = torch.chunk(pred, 2, dim=1)
51
+
52
+ g = F.sigmoid(g)
53
+
54
+ pred = g * pred
55
+
56
+ tgt = tgt + pred
57
+
58
+ if tgt_pre is not None:
59
+ tgt = rearrange(tgt, 'b c h w -> b (h w) c')
60
+ tgt = torch.cat([tgt_pre, tgt], dim=1)
61
+
62
+ return tgt
63
+
64
+
65
+ class AttnDownsample(nn.Module):
66
+ def __init__(self, dim: int, window_size: int, num_heads: int = 16):
67
+ super().__init__()
68
+ self.q = nn.Parameter(torch.randn(1, num_heads, 1, dim // num_heads) * 0.01)
69
+ self.kv = nn.Linear(dim, dim * 2)
70
+ self.proj = nn.Linear(dim, dim)
71
+ self.window_size = window_size
72
+ self.num_heads = num_heads
73
+ self.head_dim = dim // num_heads
74
+ self.scale = self.head_dim ** -0.5
75
+
76
+ def forward(self, x: torch.Tensor, twod_shape: Tuple[int, int]) -> torch.Tensor:
77
+ ntok = twod_shape[0] * twod_shape[1]
78
+ x_pre = x[:, :-ntok]
79
+
80
+ B = x.shape[0]
81
+ ds_hw = tuple(s // self.window_size for s in twod_shape)
82
+
83
+ x_spat = rearrange(
84
+ x[:, -ntok:],
85
+ 'b (h d1 w d2) c -> (b h w) (d1 d2) c',
86
+ h=ds_hw[0], w=ds_hw[1],
87
+ d1=self.window_size, d2=self.window_size,
88
+ )
89
+
90
+ B, N, C = x_spat.shape
91
+
92
+ k, v = self.kv(x_spat).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
93
+
94
+ q = (self.q * self.scale).expand(B, -1, -1, -1)
95
+ attn = q @ k.transpose(-2, -1)
96
+ attn = F.softmax(attn, dim=-1)
97
+ x = attn @ v
98
+
99
+ x = x.transpose(1, 2).reshape(B, C)
100
+ x = self.proj(x)
101
+
102
+ x = rearrange(x, '(b h w) c -> b (h w) c', b=x_pre.shape[0], h=ds_hw[0], w=ds_hw[1])
103
+
104
+ x = torch.cat([x_pre, x], dim=1)
105
+ return x
106
+
107
+
108
+ class HybridModel(nn.Module):
109
+ def __init__(self, vit: tvit.VisionTransformer, conv: tconv.ConvNeXt, pretrained: bool = False,
110
+ concatenate: bool = False, **kwargs):
111
+ super().__init__()
112
+ self.conv = conv
113
+ self.vit = vit
114
+ self.concatenate = concatenate
115
+
116
+ conv.stages = nn.ModuleList(conv.stages)
117
+ vit.blocks = nn.ModuleList(vit.blocks)
118
+
119
+ self._half_vit_idx = len(vit.blocks) // 2 + 1
120
+
121
+ self._half_conv_idx = None
122
+ x = torch.empty(1, 3, 256, 256)
123
+ x = self.conv.stem(x)
124
+ for i in range(len(conv.stages)):
125
+ x = conv.stages[i](x)
126
+ if self._half_conv_idx is None and x.shape[-2:] == (16, 16):
127
+ self._half_conv_idx = i + 1
128
+ half_conv_dim = x.shape[1]
129
+ final_conv_dim = x.shape[1]
130
+
131
+ self.vit_to_conv_fusion = Fuser(vit.embed_dim, half_conv_dim)
132
+ self.conv_to_vit_fusion = Fuser(half_conv_dim, vit.embed_dim)
133
+ self.vit_ds = AttnDownsample(vit.embed_dim, window_size=2)
134
+
135
+ embed_dim = vit.embed_dim + (final_conv_dim if concatenate else 0)
136
+ if not concatenate:
137
+ self.final_fuse = Fuser(final_conv_dim, vit.embed_dim, gated=False)
138
+ self.final_block = tvit.Block(embed_dim, num_heads=16)
139
+
140
+ self.embed_dim = embed_dim
141
+
142
+ @property
143
+ def patch_size(self):
144
+ return 32
145
+
146
+ @property
147
+ def no_fsdp_wrap_types(self):
148
+ return {tvit.VisionTransformer, tconv.ConvNeXt}
149
+
150
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
151
+ return self.forward_features(x)
152
+
153
+ def forward_features(self, x: torch.Tensor) -> torch.Tensor:
154
+ y_vit = self.vit.patch_generator(x)
155
+
156
+ for i in range(self._half_vit_idx):
157
+ y_vit = self.vit.blocks[i](y_vit)
158
+
159
+ y_conv = self.conv.stem(x)
160
+ for i in range(self._half_conv_idx):
161
+ y_conv = self.conv.stages[i](y_conv)
162
+
163
+ y_vit, y_conv = self.conv_to_vit_fusion(y_conv, y_vit), self.vit_to_conv_fusion(y_vit, y_conv)
164
+
165
+ y_vit = self.vit_ds(y_vit, y_conv.shape[-2:])
166
+
167
+ for i in range(self._half_vit_idx, len(self.vit.blocks)):
168
+ y_vit = self.vit.blocks[i](y_vit)
169
+
170
+ for i in range(self._half_conv_idx, len(self.conv.stages)):
171
+ y_conv = self.conv.stages[i](y_conv)
172
+
173
+ if self.concatenate:
174
+ y_conv = rearrange(y_conv, 'b c h w -> b (h w) c')
175
+ # Average pool across the board, and replicate for each cls/register token
176
+ conv_summary = y_conv.mean(dim=1, keepdim=True).expand(-1, self.vit.patch_generator.num_cls_patches, -1)
177
+ y_conv = torch.cat([conv_summary, y_conv], dim=1)
178
+ y = torch.cat([y_vit, y_conv], dim=2)
179
+ else:
180
+ y = self.final_fuse(y_conv, y_vit)
181
+ y = self.final_block(y)
182
+
183
+ summary = y[:, :self.vit.patch_generator.num_cls_tokens]
184
+ features = y[:, self.vit.patch_generator.num_cls_patches:]
185
+
186
+ return summary, features
187
+
188
+
189
+ @register_model
190
+ def hybrid_base(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
191
+ cfg = dict(num_classes=0, **kwargs)
192
+ conv = tconv.convnextv2_base(pretrained=pretrained, **cfg)
193
+ vit = tvit.vit_base_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
194
+
195
+ return HybridModel(vit, conv, pretrained, concatenate=concatenate)
196
+
197
+
198
+ @register_model
199
+ def hybrid_large(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
200
+ cfg = dict(num_classes=0, **kwargs)
201
+ conv = tconv.convnextv2_large(pretrained=pretrained, **cfg)
202
+ vit = tvit.vit_large_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
203
+
204
+ return HybridModel(vit, conv, pretrained, concatenate=concatenate)
205
+
206
+
207
+ @register_model
208
+ def hybrid_huge(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
209
+ cfg = dict(num_classes=0, **kwargs)
210
+ conv = tconv.convnextv2_huge(pretrained=pretrained, **cfg)
211
+ vit = et.vit_huge_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)
212
+
213
+ return HybridModel(vit, conv, pretrained, concatenate=concatenate)
enable_cpe_support.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from typing import List, Optional, Set, Tuple, Union
10
+ from types import MethodType
11
+
12
+ import torch
13
+ from torch import nn
14
+
15
+ from timm.models import VisionTransformer, checkpoint_seq
16
+
17
+ from radio.feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer
18
+
19
+ from .extra_models import DinoWrapper
20
+ from .vit_patch_generator import ViTPatchGenerator
21
+ from .forward_intermediates import forward_intermediates
22
+ from .dual_hybrid_vit import HybridModel
23
+
24
+
25
+ def _forward_cpe(self: VisionTransformer, x: torch.Tensor) -> torch.Tensor:
26
+ x = self.patch_generator(x)
27
+ if getattr(self, 'grad_checkpointing', False) and not torch.jit.is_scripting():
28
+ x = checkpoint_seq(self.blocks, x)
29
+ else:
30
+ x = self.blocks(x)
31
+ x = self.norm(x)
32
+ return x
33
+
34
+
35
+ def _take_indices(
36
+ num_blocks: int,
37
+ n: Optional[Union[int, List[int], Tuple[int]]],
38
+ ) -> Tuple[Set[int], int]:
39
+ if isinstance(n, int):
40
+ assert n >= 0
41
+ take_indices = {x for x in range(num_blocks - n, num_blocks)}
42
+ else:
43
+ take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
44
+ return take_indices, max(take_indices)
45
+
46
+
47
+ def _forward_intermediates_cpe(
48
+ self,
49
+ x: torch.Tensor,
50
+ norm: bool = False,
51
+ **kwargs,
52
+ ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
53
+ return forward_intermediates(
54
+ self,
55
+ patch_extractor=self.patch_generator,
56
+ num_summary_tokens=self.patch_generator.num_skip,
57
+ num_cls_tokens=self.patch_generator.num_cls_tokens,
58
+ norm=self.norm if norm else lambda y: y,
59
+ x=x,
60
+ **kwargs,
61
+ )
62
+
63
+
64
+ def _forward_cpe_dinov2(self: DinoWrapper, x: torch.Tensor) -> torch.Tensor:
65
+ y = _forward_cpe(self.inner, x)
66
+
67
+ return y[:, 0], y[:, self.num_summary_tokens:]
68
+
69
+
70
+ def _forward_intermediates_cpe_dinov2(self: DinoWrapper, *args, **kwargs):
71
+ return _forward_intermediates_cpe(self.inner, *args, **kwargs)
72
+
73
+
74
+ def _enable_cpe_for_timm_vit(model: VisionTransformer,
75
+ max_img_size: Union[int, Tuple[int, int]] = 1024,
76
+ num_cls_tokens: int = 1,
77
+ pos_dropout: float = 0.1,
78
+ register_multiple: int = Optional[None],
79
+ num_registers: int = Optional[None],
80
+ ):
81
+ if not isinstance(model, VisionTransformer):
82
+ raise ValueError("CPE only support for VisionTransformer models!")
83
+
84
+ patch_size = model.patch_embed.patch_size[0]
85
+ embed_dim = model.embed_dim
86
+ input_dims = model.patch_embed.img_size
87
+ normalize_patches = not isinstance(model.patch_embed.norm, nn.Identity)
88
+ cls_token = model.cls_token is not None
89
+
90
+ max_img_size = int(round(max_img_size / patch_size) * patch_size)
91
+
92
+ patch_generator = ViTPatchGenerator(
93
+ patch_size=patch_size,
94
+ embed_dim=embed_dim,
95
+ input_dims=input_dims,
96
+ normalize_patches=normalize_patches,
97
+ cls_token=cls_token,
98
+ max_input_dims=max_img_size,
99
+ pos_dropout=pos_dropout,
100
+ num_cls_tokens=num_cls_tokens,
101
+ register_multiple=register_multiple,
102
+ num_registers=num_registers,
103
+ )
104
+
105
+ model.patch_generator = patch_generator
106
+ model.patch_embed = None
107
+ model.cls_token = None
108
+ model.pos_embed = None
109
+ model.pos_drop = None
110
+ model.patch_size = patch_size
111
+ model.num_cls_tokens = num_cls_tokens
112
+ model.num_registers = patch_generator.num_registers
113
+
114
+ model.forward_features = MethodType(_forward_cpe, model)
115
+ model.forward_intermediates = MethodType(_forward_intermediates_cpe, model)
116
+
117
+
118
+ def _enable_cpe_for_dv2_reg_vit(model: DinoWrapper,
119
+ max_img_size: Union[int, Tuple[int, int]] = 1024,
120
+ num_cls_tokens: int = 1,
121
+ pos_dropout: float = 0.1,
122
+ register_multiple: int = Optional[None],
123
+ num_registers: int = Optional[None],
124
+ ):
125
+ patch_size = model.patch_size
126
+ embed_dim = model.embed_dim
127
+ input_dims = model.inner.patch_embed.patches_resolution
128
+ normalize_patches = not isinstance(model.inner.patch_embed.norm, nn.Identity)
129
+ cls_token = True
130
+
131
+ max_img_size = int(round(max_img_size / patch_size) * patch_size)
132
+
133
+ patch_generator = ViTPatchGenerator(
134
+ patch_size=patch_size,
135
+ embed_dim=embed_dim,
136
+ input_dims=input_dims,
137
+ normalize_patches=normalize_patches,
138
+ cls_token=cls_token,
139
+ max_input_dims=max_img_size,
140
+ pos_dropout=pos_dropout,
141
+ num_cls_tokens=num_cls_tokens,
142
+ register_multiple=register_multiple,
143
+ num_registers=num_registers,
144
+ patch_bias=True,
145
+ )
146
+
147
+ inner = model.inner
148
+ inner.patch_generator = patch_generator
149
+ inner.patch_embed = None
150
+ inner.cls_token = None
151
+ inner.pos_embed = None
152
+ inner.register_tokens = None
153
+ inner.patch_size = patch_size
154
+
155
+ model.forward_features = MethodType(_forward_cpe_dinov2, model)
156
+ model.forward_intermediates = MethodType(_forward_intermediates_cpe_dinov2, model)
157
+
158
+
159
+ def enable_cpe(model: nn.Module,
160
+ *args,
161
+ **kwargs,
162
+ ):
163
+ if isinstance(model, VisionTransformer):
164
+ _enable_cpe_for_timm_vit(model, *args, **kwargs)
165
+ elif isinstance(model, DinoWrapper):
166
+ _enable_cpe_for_dv2_reg_vit(model, *args, **kwargs)
167
+ elif isinstance(model, HybridModel):
168
+ _enable_cpe_for_timm_vit(model.vit, *args, **kwargs)
169
+ else:
170
+ raise ValueError(f'CPE not supported for this model type: {type(model)}')
enable_spectral_reparam.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from logging import getLogger
10
+ import math
11
+ import os
12
+ from typing import Dict, List, Optional, Union, Tuple
13
+ from types import MethodType
14
+
15
+ import torch
16
+ from torch import nn
17
+ from torch.nn import functional as F
18
+ from torch.nn.utils import parametrize
19
+ from torch.nn.utils.parametrizations import _SpectralNorm
20
+
21
+ from timm.models.vision_transformer import Attention, Mlp
22
+
23
+ _EPS = 1e-5
24
+
25
+
26
+ class _SNReweight(_SpectralNorm):
27
+ def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, alpha: float = 0.05, version: int = 2, **kwargs):
28
+ super().__init__(weight, *args, **kwargs)
29
+
30
+ self.alpha = alpha
31
+ self.version = version
32
+ self.register_buffer('_sn_version', torch.tensor(version))
33
+
34
+ if init_norm_to_current:
35
+ # This will set the numerator to match the denominator, which should preserve the original values
36
+ init_scale = self._get_sigma(weight, n_power_iterations=20).item()
37
+ else:
38
+ init_scale = 1.0
39
+
40
+ if version == 1:
41
+ init_value = init_scale
42
+ elif version == 2:
43
+ t = init_scale - alpha
44
+ if t < _EPS:
45
+ getLogger("spectral_reparam").warn(f'The initialized spectral norm {init_scale} is too small to be represented. Setting to {_EPS} instead.')
46
+ t = _EPS
47
+
48
+ init_value = math.log(math.exp(t) - 1)
49
+ else:
50
+ raise ValueError(f'Unsupported version: {version}')
51
+
52
+ # Make 2D so that weight decay gets applied
53
+ self.scale = nn.Parameter(torch.tensor([[init_value]], dtype=torch.float32, device=weight.device))
54
+
55
+ # Re-implementing this because we need to make division by sigma safe
56
+ def _get_sigma(self, weight: torch.Tensor, n_power_iterations: int = None) -> torch.Tensor:
57
+ if not n_power_iterations:
58
+ n_power_iterations = self.n_power_iterations
59
+ if weight.ndim == 1:
60
+ # Faster and more exact path, no need to approximate anything
61
+ sigma = weight.norm()
62
+ else:
63
+ weight_mat = self._reshape_weight_to_matrix(weight)
64
+ if self.training:
65
+ self._power_method(weight_mat, n_power_iterations)
66
+ # See above on why we need to clone
67
+ u = self._u.clone(memory_format=torch.contiguous_format)
68
+ v = self._v.clone(memory_format=torch.contiguous_format)
69
+ # The proper way of computing this should be through F.bilinear, but
70
+ # it seems to have some efficiency issues:
71
+ # https://github.com/pytorch/pytorch/issues/58093
72
+ sigma = torch.dot(u, torch.mv(weight_mat, v))
73
+
74
+ return sigma + self.eps
75
+
76
+ def forward(self, weight: torch.Tensor, *args, **kwargs):
77
+ dtype = weight.dtype
78
+ sigma = self._get_sigma(weight, *args, **kwargs)
79
+
80
+ if self.version == 1:
81
+ scale = self.scale
82
+ elif self.version == 2:
83
+ scale = F.softplus(self.scale) + self.alpha
84
+ else:
85
+ raise ValueError(f'Unsupported version: {self.version}')
86
+
87
+ scale = scale.float() / sigma.float()
88
+
89
+ y = weight * scale
90
+
91
+ if dtype in (torch.float16, torch.bfloat16):
92
+ y = y.to(dtype)
93
+ return y
94
+
95
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
96
+ version_key = f'{prefix}_sn_version'
97
+ if version_key not in state_dict:
98
+ self.version = 1
99
+ state_dict[version_key] = torch.tensor(1)
100
+ return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
101
+
102
+
103
+ class _ChunkedSNReweight(nn.Module):
104
+ def __init__(self, weight: torch.Tensor, num_chunks: int, *args, init_norm_to_current: bool = False, **kwargs):
105
+ super().__init__()
106
+
107
+ self.num_chunks = num_chunks
108
+ parts = weight.split(weight.shape[0] // num_chunks, dim=0)
109
+
110
+ self.parts = nn.ModuleList([
111
+ _SNReweight(p, *args, init_norm_to_current=init_norm_to_current, **kwargs)
112
+ for p in parts
113
+ ])
114
+
115
+ def forward(self, weight: torch.Tensor, *args, **kwargs):
116
+ parts = weight.split(weight.shape[0] // self.num_chunks, dim=0)
117
+
118
+ parts = [
119
+ fn(p)
120
+ for fn, p in zip(self.parts, parts)
121
+ ]
122
+
123
+ return torch.cat(parts, dim=0)
124
+
125
+
126
+ class _AttnSNReweight(_ChunkedSNReweight):
127
+ def __init__(self, weight: torch.Tensor, *args, init_norm_to_current: bool = False, renorm_values: bool = False, **kwargs):
128
+ super().__init__(weight, 3, *args, init_norm_to_current=init_norm_to_current, **kwargs)
129
+
130
+ if not renorm_values:
131
+ self.parts[2] = nn.Identity()
132
+
133
+
134
+ def enable_spectral_reparam(model: Union[nn.Module, List[nn.Module]],
135
+ n_power_iterations: int = 1,
136
+ eps: float = 1e-6,
137
+ init_norm_to_current: bool = False,
138
+ renorm_values: bool = True,
139
+ renorm_mlp: bool = True,
140
+ state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
141
+ if isinstance(model, (list, tuple)):
142
+ for i, sub in enumerate(model):
143
+ sub_sd = state_dict_guidance[i] if isinstance(state_dict_guidance, (list, tuple)) else state_dict_guidance
144
+ enable_spectral_reparam(sub, n_power_iterations=n_power_iterations, eps=eps,
145
+ init_norm_to_current=init_norm_to_current, renorm_values=renorm_values,
146
+ renorm_mlp=renorm_mlp, state_dict_guidance=sub_sd)
147
+ return
148
+
149
+ print('Enabling spectral reparametrization')
150
+ args = dict(n_power_iterations=n_power_iterations, dim=0, eps=eps, init_norm_to_current=init_norm_to_current)
151
+ visited_prefixes = set()
152
+
153
+ def is_guidance_parametrized(name: str):
154
+ if state_dict_guidance is None:
155
+ return True
156
+
157
+ p_name = f'{name}.parametrizations'
158
+ is_prm = any(k for k in state_dict_guidance if k.startswith(p_name) and k.endswith('_sn_version'))
159
+ return is_prm
160
+
161
+ def parametrize_linear(linear: nn.Linear):
162
+ parametrize.register_parametrization(
163
+ linear,
164
+ 'weight',
165
+ _SNReweight(linear.weight, **args)
166
+ )
167
+
168
+ for name, mod in model.named_modules():
169
+ pref = '.'.join(name.split('.')[:-1])
170
+ if pref in visited_prefixes:
171
+ continue
172
+
173
+ if isinstance(mod, Attention) or name.endswith('.attn'):
174
+ if is_guidance_parametrized(f'{name}.qkv'):
175
+ parametrize.register_parametrization(
176
+ mod.qkv,
177
+ 'weight',
178
+ _AttnSNReweight(mod.qkv.weight, renorm_values=renorm_values, **args),
179
+ )
180
+ if hasattr(mod, 'proj') and is_guidance_parametrized(f'{name}.proj'):
181
+ parametrize_linear(mod.proj)
182
+ visited_prefixes.add(name)
183
+ elif name.endswith('mlp') and renorm_mlp and hasattr(mod, 'w12'):
184
+ if is_guidance_parametrized(f'{name}.w12'):
185
+ parametrize.register_parametrization(
186
+ mod.w12,
187
+ 'weight',
188
+ _ChunkedSNReweight(mod.w12.weight, num_chunks=2, **args),
189
+ )
190
+ if is_guidance_parametrized(f'{name}.w3'):
191
+ parametrize_linear(mod.w3)
192
+ visited_prefixes.add(name)
193
+ elif isinstance(mod, nn.Linear) and 'patch_generator' not in name and is_guidance_parametrized(name):
194
+ parametrize_linear(mod)
195
+
196
+
197
+ def configure_spectral_reparam_from_args(model: nn.Module, args, state_dict_guidance: Optional[Dict[str, torch.Tensor]] = None):
198
+ spectral_reparam = getattr(args, 'spectral_reparam', False)
199
+ if isinstance(spectral_reparam, bool) and spectral_reparam:
200
+ enable_spectral_reparam(model, init_norm_to_current=True, state_dict_guidance=state_dict_guidance)
201
+ elif isinstance(spectral_reparam, dict):
202
+ enable_spectral_reparam(
203
+ model,
204
+ n_power_iterations=spectral_reparam.get('n_power_iterations', 1),
205
+ eps=spectral_reparam.get('eps', 1e-12),
206
+ init_norm_to_current=True,
207
+ state_dict_guidance=state_dict_guidance,
208
+ )
209
+
210
+
211
+ def disable_spectral_reparam(model: nn.Module):
212
+ print('Disabling spectral reparametrization')
213
+ for name, mod in model.named_modules():
214
+ if parametrize.is_parametrized(mod):
215
+ parametrize.remove_parametrizations(mod, 'weight')
216
+ pass
217
+
218
+
219
+
220
+ if __name__ == '__main__':
221
+ import argparse
222
+ from . import radio_model as create_model
223
+
224
+ parser = argparse.ArgumentParser(description='Remove parametrization from state dict')
225
+ parser.add_argument('--checkpoint', type=str, required=True, help='The checkpoint to load')
226
+ parser.add_argument('--output', type=str, default='', help='Where to store the checkpoint')
227
+ parser.add_argument('--release', default=False, action='store_true', help='Prune extraneous checkpoint fields')
228
+ parser.add_argument('--strict', default=False, action='store_true', help='Strictly load the state dict')
229
+
230
+ args = parser.parse_args()
231
+
232
+ if not args.output:
233
+ chk_dir, chk_name = os.path.split(args.checkpoint)
234
+ args.output = os.path.join(chk_dir, f'clean_{chk_name}')
235
+ print(f'Set output to "{args.output}"')
236
+
237
+ chk = torch.load(args.checkpoint, map_location='cpu', mmap=True)
238
+
239
+ model = create_model.create_model_from_args(chk['args'])
240
+
241
+ key = 'base_model.'
242
+ mod_state = dict()
243
+ extra_state = dict()
244
+ for k, v in chk['state_dict'].items():
245
+ if k.startswith(key):
246
+ mod_state[k[len(key):]] = v
247
+ else:
248
+ extra_state[k] = v
249
+
250
+ chk_load_info = model.load_state_dict(mod_state, strict=args.strict)
251
+ if chk_load_info.unexpected_keys or chk_load_info.missing_keys:
252
+ print(chk_load_info)
253
+
254
+ if chk['args'].spectral_reparam:
255
+ disable_spectral_reparam(model)
256
+
257
+ if hasattr(chk['args'], 'dtype'):
258
+ model.to(dtype=chk['args'].dtype)
259
+
260
+ mod_state = model.state_dict()
261
+ final_state = dict()
262
+ final_state.update({f'{key}{k}': v for k, v in mod_state.items()})
263
+ final_state.update(extra_state)
264
+
265
+ chk['state_dict'] = final_state
266
+ chk['args'].spectral_reparam = False
267
+
268
+ if args.release:
269
+ chk = {
270
+ 'arch': chk['arch'],
271
+ 'epoch': chk['epoch'],
272
+ 'state_dict': chk['state_dict'],
273
+ 'args': chk['args'],
274
+ }
275
+
276
+ torch.save(chk, args.output)
277
+ pass
eradio_model.py ADDED
@@ -0,0 +1,1392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
6
+ # and proprietary rights in and to this software, related documentation
7
+ # and any modifications thereto. Any use, reproduction, disclosure or
8
+ # distribution of this software and related documentation without an express
9
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
+
11
+ # E-RADIO model from
12
+ # Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. "AM-RADIO: Agglomerative Model--Reduce All Domains Into One." arXiv preprint arXiv:2312.06709 (2023).
13
+
14
+ # based on FasterViT, Swin Transformer, YOLOv8
15
+
16
+ # FasterViT:
17
+ # Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. "FasterViT: Fast Vision Transformers with Hierarchical Attention." arXiv preprint arXiv:2306.06189 (2023).
18
+
19
+ import timm
20
+ import torch
21
+ import torch.nn as nn
22
+ from timm.models.registry import register_model
23
+
24
+ from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
25
+ import numpy as np
26
+ import torch.nn.functional as F
27
+ import math
28
+ import warnings
29
+
30
+ #######################
31
+ ## Codebase from YOLOv8
32
+ ## BEGINNING
33
+ #######################
34
+
35
+ class C2f(nn.Module):
36
+ """Faster Implementation of CSP Bottleneck with 2 convolutions."""
37
+ """From YOLOv8 codebase"""
38
+ def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
39
+ super().__init__()
40
+ if drop_path is None:
41
+ drop_path = [0.0] * n
42
+
43
+ self.c = int(c2 * e) # hidden channels
44
+ self.cv1 = Conv(c1, 2 * self.c, 1, 1)
45
+ self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
46
+ self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
47
+
48
+ def forward(self, x):
49
+ """Forward pass through C2f layer."""
50
+ y = list(self.cv1(x).chunk(2, 1))
51
+ y.extend(m(y[-1]) for m in self.m)
52
+ return self.cv2(torch.cat(y, 1))
53
+
54
+ def forward_split(self, x):
55
+ """Forward pass using split() instead of chunk()."""
56
+ y = list(self.cv1(x).split((self.c, self.c), 1))
57
+ y.extend(m(y[-1]) for m in self.m)
58
+ return self.cv2(torch.cat(y, 1))
59
+
60
+ class Bottleneck(nn.Module):
61
+ """Standard bottleneck."""
62
+
63
+ def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
64
+ super().__init__()
65
+ c_ = int(c2 * e) # hidden channels
66
+ self.cv1 = Conv(c1, c_, k[0], 1)
67
+ self.cv2 = Conv(c_, c2, k[1], 1, g=g)
68
+ self.add = shortcut and c1 == c2
69
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
70
+
71
+ def forward(self, x):
72
+ """'forward()' applies the YOLOv5 FPN to input data."""
73
+ return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
74
+
75
+
76
+ class Conv(nn.Module):
77
+ """Modified to support layer fusion"""
78
+ default_act = nn.SiLU() # default activation
79
+
80
+ def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
81
+ super().__init__()
82
+
83
+ self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
84
+ if 1:
85
+ self.bn = torch.nn.BatchNorm2d(b)
86
+ torch.nn.init.constant_(self.bn.weight, bn_weight_init)
87
+ torch.nn.init.constant_(self.bn.bias, 0)
88
+ self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
89
+
90
+
91
+ def forward(self,x):
92
+ x = self.conv(x)
93
+ x = self.bn(x)
94
+ x = self.act(x)
95
+ return x
96
+
97
+ @torch.no_grad()
98
+ def switch_to_deploy(self):
99
+ # return 1
100
+ if not isinstance(self.bn, nn.Identity):
101
+ c, bn = self.conv, self.bn
102
+ w = bn.weight / (bn.running_var + bn.eps) ** 0.5
103
+ w = c.weight * w[:, None, None, None]
104
+ b = bn.bias - bn.running_mean * bn.weight / \
105
+ (bn.running_var + bn.eps)**0.5
106
+
107
+ self.conv.weight.data.copy_(w)
108
+ self.conv.bias = nn.Parameter(b)
109
+
110
+ self.bn = nn.Identity()
111
+
112
+ def autopad(k, p=None, d=1): # kernel, padding, dilation
113
+ """Pad to 'same' shape outputs."""
114
+ if d > 1:
115
+ k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
116
+ if p is None:
117
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
118
+ return p
119
+
120
+
121
+ #######################
122
+ ## Codebase from YOLOv8
123
+ ## END
124
+ #######################
125
+
126
+ def pixel_unshuffle(data, factor=2):
127
+ # performs nn.PixelShuffle(factor) in reverse, torch has some bug for ONNX and TRT, so doing it manually
128
+ B, C, H, W = data.shape
129
+ return data.view(B, C, factor, H//factor, factor, W//factor).permute(0,1,2,4,3,5).reshape(B, -1, H//factor, W//factor)
130
+
131
+ class SwiGLU(nn.Module):
132
+ # should be more advanced, but doesnt improve results so far
133
+ def forward(self, x):
134
+ x, gate = x.chunk(2, dim=-1)
135
+ return F.silu(gate) * x
136
+
137
+
138
+ def window_partition(x, window_size):
139
+ """
140
+ Function for partitioning image into windows and later do windowed attention
141
+ Args:
142
+ x: (B, C, H, W)
143
+ window_size: window size
144
+ Returns:
145
+ windows - local window features (num_windows*B, window_size*window_size, C)
146
+ (Hp, Wp) - the size of the padded image
147
+ """
148
+ B, C, H, W = x.shape
149
+
150
+ if window_size == 0 or (window_size==H and window_size==W):
151
+ windows = x.flatten(2).transpose(1, 2)
152
+ Hp, Wp = H, W
153
+ else:
154
+ pad_h = (window_size - H % window_size) % window_size
155
+ pad_w = (window_size - W % window_size) % window_size
156
+ if pad_h > 0 or pad_w > 0:
157
+ x = F.pad(x, (0, pad_w, 0, pad_h), mode="reflect")
158
+ Hp, Wp = H + pad_h, W + pad_w
159
+
160
+ x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size)
161
+ windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
162
+
163
+ return windows, (Hp, Wp)
164
+
165
+ class Conv2d_BN(nn.Module):
166
+ '''
167
+ Conv2d + BN layer with folding capability to speed up inference
168
+ Can be merged with Conv() function with additional arguments
169
+ '''
170
+ def __init__(self, a, b, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1, bias=False):
171
+ super().__init__()
172
+ self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, padding, dilation, groups, bias=False)
173
+ if 1:
174
+ self.bn = torch.nn.BatchNorm2d(b)
175
+ torch.nn.init.constant_(self.bn.weight, bn_weight_init)
176
+ torch.nn.init.constant_(self.bn.bias, 0)
177
+
178
+ def forward(self,x):
179
+ x = self.conv(x)
180
+ x = self.bn(x)
181
+ return x
182
+
183
+ @torch.no_grad()
184
+ def switch_to_deploy(self):
185
+ if not isinstance(self.bn, nn.Identity):
186
+ c, bn = self.conv, self.bn
187
+ w = bn.weight / (bn.running_var + bn.eps) ** 0.5
188
+ w = c.weight * w[:, None, None, None]
189
+ b = bn.bias - bn.running_mean * bn.weight / \
190
+ (bn.running_var + bn.eps)**0.5
191
+ self.conv.weight.data.copy_(w)
192
+ self.conv.bias = nn.Parameter(b)
193
+ self.bn = nn.Identity()
194
+
195
+
196
+
197
+ def window_reverse(windows, window_size, H, W, pad_hw):
198
+ """
199
+ Windows to the full feature map
200
+ Args:
201
+ windows: local window features (num_windows*B, window_size, window_size, C)
202
+ window_size: Window size
203
+ H: Height of image
204
+ W: Width of image
205
+ pad_w - a tuple of image passing used in windowing step
206
+ Returns:
207
+ x: (B, C, H, W)
208
+
209
+ """
210
+ # print(f"window_reverse, windows.shape {windows.shape}")
211
+ Hp, Wp = pad_hw
212
+ if window_size == 0 or (window_size==H and window_size==W):
213
+ B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
214
+ x = windows.transpose(1, 2).view(B, -1, H, W)
215
+ else:
216
+ B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
217
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
218
+ x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], Hp, Wp)
219
+
220
+ if Hp > H or Wp > W:
221
+ x = x[:, :, :H, :W, ].contiguous()
222
+
223
+ return x
224
+
225
+
226
+
227
+ class PosEmbMLPSwinv2D(nn.Module):
228
+ """
229
+ 2D positional embedding from Swin Transformer v2
230
+ Added functionality to store the positional embedding in the model and not recompute it every time
231
+ """
232
+ def __init__(
233
+ self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False, cpb_mlp_hidden=512,
234
+ ):
235
+ super().__init__()
236
+ self.window_size = window_size
237
+ self.num_heads = num_heads
238
+ # mlp to generate continuous relative position bias
239
+ self.cpb_mlp = nn.Sequential(
240
+ nn.Linear(2, cpb_mlp_hidden, bias=True),
241
+ nn.ReLU(inplace=True),
242
+ nn.Linear(cpb_mlp_hidden, num_heads, bias=False),
243
+ )
244
+
245
+ self.grid_exists = False
246
+ self.seq_length = seq_length
247
+ self.deploy = False
248
+ self.num_heads = num_heads
249
+ self.no_log = no_log
250
+ self.pretrained_window_size = pretrained_window_size
251
+ self.relative_bias_window_size = window_size
252
+
253
+ relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(window_size, num_heads,
254
+ pretrained_window_size, seq_length,
255
+ no_log)
256
+
257
+ self.register_buffer("relative_coords_table", relative_coords_table)
258
+ self.register_buffer("relative_position_index", relative_position_index)
259
+ self.register_buffer("relative_bias", relative_bias) # for EMA
260
+
261
+ def relative_bias_initialization(self, window_size, num_heads, pretrained_window_size, seq_length, no_log):
262
+ # as in separate function to support window size chage after model weights loading
263
+ relative_coords_h = torch.arange(
264
+ -(window_size[0] - 1), window_size[0], dtype=torch.float32
265
+ )
266
+ relative_coords_w = torch.arange(
267
+ -(window_size[1] - 1), window_size[1], dtype=torch.float32
268
+ )
269
+ relative_coords_table = (
270
+ torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
271
+ .permute(1, 2, 0)
272
+ .contiguous()
273
+ .unsqueeze(0)
274
+ ) # 1, 2*Wh-1, 2*Ww-1, 2
275
+ if pretrained_window_size[0] > 0:
276
+ relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
277
+ relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
278
+ else:
279
+ relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
280
+ relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
281
+
282
+ if not no_log:
283
+ relative_coords_table *= 8 # normalize to -8, 8
284
+ relative_coords_table = (
285
+ torch.sign(relative_coords_table)
286
+ * torch.log2(torch.abs(relative_coords_table) + 1.0)
287
+ / np.log2(8)
288
+ )
289
+
290
+ # get pair-wise relative position index for each token inside the window
291
+ coords_h = torch.arange(self.window_size[0])
292
+ coords_w = torch.arange(self.window_size[1])
293
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
294
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
295
+ relative_coords = (
296
+ coords_flatten[:, :, None] - coords_flatten[:, None, :]
297
+ ) # 2, Wh*Ww, Wh*Ww
298
+ relative_coords = relative_coords.permute(
299
+ 1, 2, 0
300
+ ).contiguous() # Wh*Ww, Wh*Ww, 2
301
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
302
+ relative_coords[:, :, 1] += self.window_size[1] - 1
303
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
304
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
305
+
306
+ relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
307
+
308
+ self.relative_bias_window_size = window_size
309
+
310
+ return relative_coords_table, relative_position_index, relative_bias
311
+
312
+
313
+ def switch_to_deploy(self):
314
+ self.deploy = True
315
+ self.grid_exists = True
316
+
317
+ def forward(self, input_tensor):
318
+ # for efficiency, we want this forward to be folded into a single operation (sum)
319
+ # if resolution stays the same, then we dont need to recompute MLP layers
320
+
321
+ if not self.deploy or self.training:
322
+ self.grid_exists = False
323
+
324
+ #compare if all elements in self.window_size list match those in self.relative_bias_window_size
325
+ if not all([self.window_size[i] == self.relative_bias_window_size[i] for i in range(len(self.window_size))]):
326
+ relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(self.window_size, self.num_heads,
327
+ self.pretrained_window_size, self.seq_length,
328
+ self.no_log)
329
+
330
+ self.relative_coords_table = relative_coords_table.to(self.relative_coords_table.device)
331
+ self.relative_position_index = relative_position_index.to(self.relative_position_index.device)
332
+ self.relative_bias = relative_bias.to(self.relative_bias.device)
333
+
334
+ if self.deploy and self.grid_exists:
335
+ input_tensor = input_tensor + self.relative_bias
336
+ return input_tensor
337
+
338
+ if 1:
339
+ self.grid_exists = True
340
+
341
+ relative_position_bias_table = self.cpb_mlp(
342
+ self.relative_coords_table
343
+ ).view(-1, self.num_heads)
344
+ relative_position_bias = relative_position_bias_table[
345
+ self.relative_position_index.view(-1)
346
+ ].view(
347
+ self.window_size[0] * self.window_size[1],
348
+ self.window_size[0] * self.window_size[1],
349
+ -1,
350
+ ) # Wh*Ww,Wh*Ww,nH
351
+
352
+ relative_position_bias = relative_position_bias.permute(
353
+ 2, 0, 1
354
+ ).contiguous() # nH, Wh*Ww, Wh*Ww
355
+ relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
356
+
357
+ self.relative_bias = relative_position_bias.unsqueeze(0)
358
+
359
+ input_tensor = input_tensor + self.relative_bias
360
+ return input_tensor
361
+
362
+
363
+ class GRAAttentionBlock(nn.Module):
364
+ def __init__(self, window_size, dim_in, dim_out,
365
+ num_heads, drop_path=0., qk_scale=None, qkv_bias=False,
366
+ norm_layer=nn.LayerNorm, layer_scale=None,
367
+ use_swiglu=True,
368
+ subsample_ratio=1, dim_ratio=1, conv_base=False,
369
+ do_windowing=True, multi_query=False, use_shift=0,
370
+ cpb_mlp_hidden=512, conv_groups_ratio=0):
371
+ '''
372
+ Global Resolution Attention Block , see README for details
373
+ Attention with subsampling to get a bigger receptive field for attention
374
+ conv_base - use conv2d instead of avgpool2d for downsample / upsample
375
+
376
+
377
+ '''
378
+ super().__init__()
379
+
380
+ self.shift_size=window_size//2 if use_shift else 0
381
+
382
+ self.do_windowing = do_windowing
383
+ self.subsample_ratio = subsample_ratio
384
+
385
+
386
+
387
+ if do_windowing:
388
+ if conv_base:
389
+ self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
390
+
391
+
392
+ self.downsample_mixer = nn.Identity()
393
+ self.upsample_mixer = nn.Identity()
394
+ self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
395
+ else:
396
+ self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
397
+ self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
398
+ self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
399
+ self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
400
+
401
+
402
+ # in case there is no downsampling conv we want to have it separately
403
+ # will help with information propagation between windows
404
+ if subsample_ratio == 1:
405
+ # conv_groups_ratio=0
406
+ self.pre_conv = Conv2d_BN(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
407
+ # self.pre_conv = nn.Conv2d(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
408
+ # self.pre_conv_act = nn.ReLU6()
409
+ #for simplicity:
410
+ self.pre_conv_act = nn.Identity()
411
+ if conv_groups_ratio == -1:
412
+ self.pre_conv = nn.Identity()
413
+ self.pre_conv_act = nn.Identity()
414
+
415
+ self.window_size = window_size
416
+
417
+ self.norm1 = norm_layer(dim_in)
418
+
419
+ self.attn = WindowAttention(
420
+ dim_in,
421
+ num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
422
+ resolution=window_size,
423
+ seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query,
424
+ shift_size=self.shift_size, cpb_mlp_hidden=cpb_mlp_hidden)
425
+
426
+ self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
427
+
428
+ use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
429
+ self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
430
+
431
+ ### mlp layer
432
+ mlp_ratio = 4
433
+ self.norm2 = norm_layer(dim_in)
434
+ mlp_hidden_dim = int(dim_in * mlp_ratio)
435
+
436
+ activation = nn.GELU if not use_swiglu else SwiGLU
437
+ mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
438
+
439
+ self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
440
+
441
+ self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
442
+ self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
443
+
444
+
445
+ def forward(self, x):
446
+ skip_connection = x
447
+ attn_mask = None
448
+
449
+ # in case there is no downsampling conv we want to have it separately
450
+ # will help with information propagation
451
+ if self.subsample_ratio == 1:
452
+ x = self.pre_conv_act(self.pre_conv(x)) + skip_connection
453
+
454
+ if self.do_windowing:
455
+ # performing windowing if required
456
+ x = self.downsample_op(x)
457
+ x = self.downsample_mixer(x)
458
+
459
+ if self.window_size>0:
460
+ H, W = x.shape[2], x.shape[3]
461
+
462
+ if self.shift_size > 0 and H>self.window_size and W>self.window_size:
463
+ # @swin like cyclic shift, doesnt show better performance
464
+ x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(2, 3))
465
+
466
+ x, pad_hw = window_partition(x, self.window_size)
467
+
468
+ if self.shift_size > 0 and H>self.window_size and W>self.window_size:
469
+ # set atten matrix to have -100 and the top right square
470
+ # attn[:, :, :-self.shift_size, -self.shift_size:] = -100.0
471
+ # calculate attention mask for SW-MSA
472
+ # not used in final version, can be useful for some cases especially for high res
473
+ H, W = pad_hw
474
+ img_mask = torch.zeros((1, H, W, 1), device=x.device) # 1 H W 1
475
+ h_slices = (slice(0, -self.window_size),
476
+ slice(-self.window_size, -self.shift_size),
477
+ slice(-self.shift_size, None))
478
+ w_slices = (slice(0, -self.window_size),
479
+ slice(-self.window_size, -self.shift_size),
480
+ slice(-self.shift_size, None))
481
+ cnt = 0
482
+ for h in h_slices:
483
+ for w in w_slices:
484
+ img_mask[:, h, w, :] = cnt
485
+ cnt += 1
486
+ img_mask = img_mask.transpose(1,2).transpose(1,3)
487
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
488
+
489
+ mask_windows = mask_windows[0].view(-1, self.window_size * self.window_size)
490
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
491
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
492
+
493
+ # window attention
494
+ x = x + self.drop_path1(self.gamma1*self.attn(self.norm1(x), attn_mask=attn_mask)) # or pass H,W
495
+ # mlp layer
496
+ x = x + self.drop_path2(self.gamma2*self.mlp(self.norm2(x)))
497
+
498
+ if self.do_windowing:
499
+ if self.window_size > 0:
500
+ x = window_reverse(x, self.window_size, H, W, pad_hw)
501
+
502
+ # reverse cyclic shift
503
+ if self.shift_size > 0 and H>self.window_size and W>self.window_size:
504
+ # @swin like cyclic shift, not tested
505
+ x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(2, 3))
506
+
507
+ x = self.upsample_mixer(x)
508
+ x = self.upsample_op(x)
509
+
510
+
511
+ if x.shape[2] != skip_connection.shape[2] or x.shape[3] != skip_connection.shape[3]:
512
+ x = torch.nn.functional.pad(x, ( 0, -x.shape[3] + skip_connection.shape[3], 0, -x.shape[2] + skip_connection.shape[2]), mode="reflect")
513
+ # need to add skip connection because downsampling and upsampling will break residual connection
514
+ # 0.5 is needed to make sure that the skip connection is not too strong
515
+ # in case of no downsample / upsample we can show that 0.5 compensates for the residual connection
516
+ x = 0.5 * x + 0.5 * skip_connection
517
+ return x
518
+
519
+
520
+
521
+
522
+ class MultiResolutionAttention(nn.Module):
523
+ """
524
+ MultiResolutionAttention (MRA) module
525
+ The idea is to use multiple attention blocks with different resolution
526
+ Feature maps are downsampled / upsampled for each attention block on different blocks
527
+ Every attention block supports windowing
528
+ """
529
+
530
+ def __init__(self, window_size, sr_ratio,
531
+ dim, dim_ratio, num_heads,
532
+ do_windowing=True,
533
+ layer_scale=1e-5, norm_layer=nn.LayerNorm,
534
+ drop_path = 0, qkv_bias=False, qk_scale=1.0,
535
+ use_swiglu=True, multi_query=False, conv_base=False,
536
+ use_shift=0, cpb_mlp_hidden=512, conv_groups_ratio=0) -> None:
537
+ """
538
+ Args:
539
+ input_resolution: input image resolution
540
+ window_size: window size
541
+ compression_ratio: compression ratio
542
+ max_depth: maximum depth of the GRA module
543
+ use_shift: do window shifting
544
+ """
545
+ super().__init__()
546
+
547
+ depth = len(sr_ratio)
548
+
549
+ self.attention_blocks = nn.ModuleList()
550
+
551
+
552
+ for i in range(depth):
553
+ subsample_ratio = sr_ratio[i]
554
+ if len(window_size) > i:
555
+ window_size_local = window_size[i]
556
+ else:
557
+ window_size_local = window_size[0]
558
+
559
+ self.attention_blocks.append(GRAAttentionBlock(window_size=window_size_local,
560
+ dim_in=dim, dim_out=dim, num_heads=num_heads,
561
+ qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer,
562
+ layer_scale=layer_scale, drop_path=drop_path,
563
+ use_swiglu=use_swiglu, subsample_ratio=subsample_ratio, dim_ratio=dim_ratio,
564
+ do_windowing=do_windowing, multi_query=multi_query, conv_base=conv_base,
565
+ use_shift=use_shift, cpb_mlp_hidden=cpb_mlp_hidden, conv_groups_ratio=conv_groups_ratio),
566
+ )
567
+
568
+ def forward(self, x):
569
+
570
+ for attention_block in self.attention_blocks:
571
+ x = attention_block(x)
572
+
573
+ return x
574
+
575
+
576
+
577
+ class Mlp(nn.Module):
578
+ """
579
+ Multi-Layer Perceptron (MLP) block
580
+ """
581
+
582
+ def __init__(self,
583
+ in_features,
584
+ hidden_features=None,
585
+ out_features=None,
586
+ act_layer=nn.GELU,
587
+ use_swiglu=True,
588
+ drop=0.):
589
+ """
590
+ Args:
591
+ in_features: input features dimension.
592
+ hidden_features: hidden features dimension.
593
+ out_features: output features dimension.
594
+ act_layer: activation function.
595
+ drop: dropout rate.
596
+ """
597
+
598
+ super().__init__()
599
+ out_features = out_features or in_features
600
+ hidden_features = hidden_features or in_features
601
+ self.fc1 = nn.Linear(in_features, hidden_features * (2 if use_swiglu else 1), bias=False)
602
+ self.act = act_layer()
603
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
604
+
605
+ def forward(self, x):
606
+ x_size = x.size()
607
+ x = x.view(-1, x_size[-1])
608
+ x = self.fc1(x)
609
+ x = self.act(x)
610
+ x = self.fc2(x)
611
+ x = x.view(x_size)
612
+ return x
613
+
614
+ class Downsample(nn.Module):
615
+ """
616
+ Down-sampling block
617
+ Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time
618
+ """
619
+
620
+ def __init__(self,
621
+ dim,
622
+ shuffle = False,
623
+ ):
624
+ """
625
+ Args:
626
+ dim: feature size dimension.
627
+ shuffle: idea with
628
+ keep_dim: bool argument for maintaining the resolution.
629
+ """
630
+
631
+ super().__init__()
632
+ dim_out = 2 * dim
633
+
634
+ if shuffle:
635
+ self.norm = lambda x: pixel_unshuffle(x, factor=2)
636
+ self.reduction = Conv2d_BN(dim*4, dim_out, 1, 1, 0, bias=False)
637
+ # pixel unshuffleging works well but doesnt provide any speedup
638
+ else:
639
+ # removed layer norm for better, in this formulation we are getting 10% better speed
640
+ # LayerNorm for high resolution inputs will be a pain as it pools over the entire spatial dimension
641
+ # therefore we remove it compared to the original implementation in FasterViT
642
+ self.norm = nn.Identity()
643
+ self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
644
+
645
+
646
+ def forward(self, x):
647
+ x = self.norm(x)
648
+ x = self.reduction(x)
649
+ return x
650
+
651
+
652
+ class PatchEmbed(nn.Module):
653
+ """
654
+ Patch embedding block
655
+ Used to convert image into an initial set of feature maps with lower resolution
656
+ """
657
+
658
+ def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
659
+ """
660
+ Args:
661
+ in_chans: number of input channels.
662
+ in_dim: intermediate feature size dimension to speed up stem.
663
+ dim: final stem channel number
664
+ shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field
665
+ """
666
+
667
+ super().__init__()
668
+ # shuffle_down = False
669
+ if not shuffle_down:
670
+ self.proj = nn.Identity()
671
+ self.conv_down = nn.Sequential(
672
+ Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False),
673
+ nn.ReLU(),
674
+ Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False),
675
+ nn.ReLU()
676
+ )
677
+ else:
678
+ self.proj = lambda x: pixel_unshuffle(x, factor=4)
679
+ self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, dim, 3, 1, 1),
680
+ nn.ReLU(),
681
+ )
682
+
683
+ def forward(self, x):
684
+ x = self.proj(x)
685
+ x = self.conv_down(x)
686
+ return x
687
+
688
+
689
+
690
+ class ConvBlock(nn.Module):
691
+ """
692
+ Convolutional block, used in first couple of stages
693
+ Experimented with plan resnet-18 like modules, they are the best in terms of throughput
694
+ Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
695
+ """
696
+ def __init__(self, dim,
697
+ drop_path=0.,
698
+ layer_scale=None,
699
+ kernel_size=3,
700
+ ):
701
+ super().__init__()
702
+
703
+ self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
704
+ self.act1 = nn.GELU()
705
+
706
+ self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
707
+
708
+ self.layer_scale = layer_scale
709
+ if layer_scale is not None and type(layer_scale) in [int, float]:
710
+ self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
711
+ self.layer_scale = True
712
+ else:
713
+ self.layer_scale = False
714
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
715
+
716
+ def forward(self, x):
717
+ input = x
718
+
719
+ x = self.conv1(x)
720
+ x = self.act1(x)
721
+ x = self.conv2(x)
722
+
723
+ if self.layer_scale:
724
+ x = x * self.gamma.view(1, -1, 1, 1)
725
+ x = input + self.drop_path(x)
726
+ return x
727
+
728
+
729
+ class WindowAttention(nn.Module):
730
+ # Windowed Attention from SwinV2
731
+ # use a MLP trick to deal with various input image resolutions, then fold it to improve speed
732
+
733
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, resolution=0,
734
+ seq_length=0, dim_out=None, multi_query=False, shift_size=0, cpb_mlp_hidden=512):
735
+ # taken from EdgeViT and tweaked with attention bias.
736
+ super().__init__()
737
+ if not dim_out: dim_out = dim
738
+ self.shift_size = shift_size
739
+ self.multi_query = multi_query
740
+ self.num_heads = num_heads
741
+ head_dim = dim // num_heads
742
+ self.head_dim = dim // num_heads
743
+
744
+ self.dim_internal = dim
745
+
746
+ self.scale = qk_scale or head_dim ** -0.5
747
+ if not multi_query:
748
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
749
+ else:
750
+ self.qkv = nn.Linear(dim, dim + 2*self.head_dim, bias=qkv_bias)
751
+
752
+ self.proj = nn.Linear(dim, dim_out, bias=False)
753
+ # attention positional bias
754
+ self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
755
+ pretrained_window_size=[resolution, resolution],
756
+ num_heads=num_heads,
757
+ seq_length=seq_length,
758
+ cpb_mlp_hidden=cpb_mlp_hidden)
759
+
760
+ self.resolution = resolution
761
+
762
+ def forward(self, x, attn_mask = None):
763
+ B, N, C = x.shape
764
+
765
+ if not self.multi_query:
766
+ qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
767
+ q, k, v = qkv[0], qkv[1], qkv[2]
768
+ else:
769
+ qkv = self.qkv(x)
770
+ (q, k, v) = qkv.split([self.dim_internal, self.head_dim, self.head_dim], dim=2)
771
+
772
+ q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
773
+ k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
774
+ v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
775
+
776
+ attn = (q @ k.transpose(-2, -1)) * self.scale
777
+
778
+ attn = self.pos_emb_funct(attn)
779
+
780
+ #add window shift
781
+ if attn_mask is not None:
782
+ nW = attn_mask.shape[0]
783
+ attn = attn.view(B // nW, nW, self.num_heads, N, N) + attn_mask.unsqueeze(1).unsqueeze(0)
784
+ attn = attn.view(-1, self.num_heads, N, N)
785
+
786
+ attn = attn.softmax(dim=-1)
787
+ x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
788
+ x = self.proj(x)
789
+ return x
790
+
791
+
792
+
793
+ class ERADIOLayer(nn.Module):
794
+ """
795
+ E-RADIO Layer
796
+ """
797
+
798
+ def __init__(self,
799
+ dim,
800
+ depth,
801
+ num_heads,
802
+ window_size,
803
+ conv=False,
804
+ downsample=True,
805
+ mlp_ratio=4.,
806
+ qkv_bias=False,
807
+ qk_scale=None,
808
+ norm_layer=nn.LayerNorm,
809
+ drop_path=0.,
810
+ layer_scale=None,
811
+ layer_scale_conv=None,
812
+ sr_dim_ratio=1,
813
+ sr_ratio=1,
814
+ multi_query=False,
815
+ use_swiglu=True,
816
+ yolo_arch=False,
817
+ downsample_shuffle=False,
818
+ conv_base=False,
819
+ use_shift=False,
820
+ cpb_mlp_hidden=512,
821
+ conv_groups_ratio=0,
822
+ verbose: bool = True,
823
+
824
+ ):
825
+ """
826
+ Args:
827
+ dim: feature size dimension.
828
+ depth: number of layers in each stage.
829
+ input_resolution: input image resolution.
830
+ window_size: window size in each stage.
831
+ downsample: bool argument for down-sampling.
832
+ mlp_ratio: MLP ratio.
833
+ num_heads: number of heads in each stage.
834
+ qkv_bias: bool argument for query, key, value learnable bias.
835
+ qk_scale: bool argument to scaling query, key.
836
+ drop: dropout rate.
837
+ attn_drop: attention dropout rate.
838
+ drop_path: drop path rate.
839
+ norm_layer: normalization layer.
840
+ layer_scale: layer scaling coefficient.
841
+ use_shift: SWIN like window shifting for half the window size for every alternating layer (considering multi-resolution)
842
+ conv_groups_ratio: group ratio for conv when no subsampling in multi-res attention
843
+ """
844
+
845
+ super().__init__()
846
+ self.conv = conv
847
+ self.yolo_arch=False
848
+ self.verbose = verbose
849
+ if conv:
850
+ if not yolo_arch:
851
+ self.blocks = nn.ModuleList([
852
+ ConvBlock(dim=dim,
853
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
854
+ layer_scale=layer_scale_conv)
855
+ for i in range(depth)])
856
+ self.blocks = nn.Sequential(*self.blocks)
857
+ else:
858
+ self.blocks = C2f(dim,dim,n=depth,shortcut=True,e=0.5)
859
+ self.yolo_arch=True
860
+ else:
861
+ if not isinstance(window_size, list): window_size = [window_size]
862
+ self.window_size = window_size[0]
863
+ self.do_single_windowing = True
864
+ if not isinstance(sr_ratio, list): sr_ratio = [sr_ratio]
865
+ self.sr_ratio = sr_ratio
866
+ if any([sr!=1 for sr in sr_ratio]) or len(set(window_size))>1:
867
+ self.do_single_windowing = False
868
+ do_windowing = True
869
+ else:
870
+ self.do_single_windowing = True
871
+ do_windowing = False
872
+
873
+ #for v2_2
874
+ if conv_groups_ratio != -1:
875
+ self.do_single_windowing = False
876
+ do_windowing = True
877
+
878
+ self.blocks = nn.ModuleList()
879
+ for i in range(depth):
880
+ self.blocks.append(
881
+ MultiResolutionAttention(window_size=window_size,
882
+ sr_ratio=sr_ratio,
883
+ dim=dim,
884
+ dim_ratio = sr_dim_ratio,
885
+ num_heads=num_heads,
886
+ norm_layer=norm_layer,
887
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
888
+ layer_scale=layer_scale,
889
+ qkv_bias=qkv_bias,
890
+ qk_scale=qk_scale,
891
+ use_swiglu=use_swiglu,
892
+ do_windowing=do_windowing,
893
+ multi_query=multi_query,
894
+ conv_base=conv_base,
895
+ cpb_mlp_hidden=cpb_mlp_hidden,
896
+ use_shift =0 if ((not use_shift) or ((i) % 2 == 0)) else True ,
897
+ conv_groups_ratio=conv_groups_ratio,
898
+ ))
899
+ self.blocks = nn.Sequential(*self.blocks)
900
+
901
+ self.transformer = not conv
902
+ self.downsample = None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
903
+
904
+
905
+ def forward(self, x):
906
+ B, C, H, W = x.shape
907
+
908
+ # do padding for transforemr
909
+ interpolate = True
910
+ if self.transformer and interpolate:
911
+ # Windowed Attention will split feature map into windows with the size of window_size x window_size
912
+ # if the resolution is not divisible by window_size, we need to interpolate the feature map
913
+ # can be done via padding, but doing so after training hurts the model performance.
914
+ # interpolation affects the performance as well, but not as much as padding
915
+ if isinstance(self.window_size, list) or isinstance(self.window_size, tuple):
916
+ current_max_window_size = max(self.window_size)
917
+ else:
918
+ current_max_window_size = self.window_size
919
+
920
+ max_window_size = max([res_upsample*current_max_window_size for res_upsample in self.sr_ratio])
921
+ if H % max_window_size != 0 or W % max_window_size != 0:
922
+ new_h = int(np.ceil(H/max_window_size)*max_window_size)
923
+ new_w = int(np.ceil(W/max_window_size)*max_window_size)
924
+ x = F.interpolate(x, size=(new_h, new_w), mode='nearest')
925
+ if self.verbose:
926
+ warnings.warn(f"Choosen window size is not optimal for given resolution. Interpolation of features maps will be done and it can affect the performance. Max window size is {max_window_size}, feature map size is {H}x{W}, interpolated feature map size is {new_h}x{new_w}.")
927
+
928
+
929
+ if self.transformer and self.do_single_windowing:
930
+ H, W = x.shape[2], x.shape[3]
931
+ x, pad_hw = window_partition(x, self.window_size)
932
+
933
+ #run main blocks
934
+ x = self.blocks(x)
935
+
936
+ if self.transformer and self.do_single_windowing:
937
+ x = window_reverse(x, self.window_size, H, W, pad_hw)
938
+
939
+ if self.transformer and interpolate:
940
+ #lets keep original resolution, might be not ideal, but for the upsampling tower we need to keep the expected resolution.
941
+ x = F.interpolate(x, size=(H, W), mode='nearest')
942
+
943
+ if self.downsample is None:
944
+ return x, x
945
+
946
+ return self.downsample(x), x # changing to output pre downsampled features
947
+
948
+
949
+ class InterpolateLayer(nn.Module):
950
+ def __init__(self, size=None, scale_factor=None, mode='nearest'):
951
+ super(InterpolateLayer, self).__init__()
952
+ self.size = size
953
+ self.scale_factor = scale_factor
954
+ self.mode = mode
955
+
956
+ def forward(self, x):
957
+ return F.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode)
958
+
959
+
960
+ class HiResNeck(nn.Module):
961
+ """
962
+ The block is used to output dense features from all stages
963
+ Otherwise, by default, only the last stage features are returned with E-RADIO
964
+ """
965
+ def __init__(self, dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled):
966
+
967
+ '''
968
+ Hi Resolution neck to support output of high res features that are useful for dense tasks.
969
+ depths - total number of layers in the base model
970
+ neck_start_stage - when to start the neck, 0 - start from the first stage, 1 - start from the second stage etc.
971
+ earlier layers result in higher resolution features at the cost of compute
972
+ full_features_head_dim - number of channels in the dense features head
973
+ '''
974
+ super().__init__()
975
+ # create feature projection layers for segmentation output
976
+ self.neck_features_proj = nn.ModuleList()
977
+ self.neck_start_stage = neck_start_stage
978
+ upsample_ratio = 1
979
+ for i in range(len(depths)):
980
+ level_n_features_output = int(dim * 2 ** i)
981
+
982
+ if self.neck_start_stage > i: continue
983
+
984
+ if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
985
+ feature_projection = nn.Sequential()
986
+ if False:
987
+ feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
988
+ feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
989
+ full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
990
+ else:
991
+ # B, in_channels, H, W -> B, in_channels, H*upsample_ratio, W*upsample_ratio
992
+ # print("upsample ratio", upsample_ratio, level_n_features_output, level_n_features_output)
993
+ feature_projection.add_module("upsample", InterpolateLayer(scale_factor=upsample_ratio, mode='nearest'))
994
+ feature_projection.add_module("conv1", nn.Conv2d(level_n_features_output, level_n_features_output, kernel_size=3, stride=1, padding=1, groups=level_n_features_output))
995
+ feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output))
996
+ # B, in_channels, H*upsample_ratio, W*upsample_ratio -> B, full_features_head_dim, H*upsample_ratio, W*upsample_ratio
997
+ feature_projection.add_module("conv2", nn.Conv2d(level_n_features_output, full_features_head_dim, kernel_size=1, stride=1, padding=0))
998
+ else:
999
+ feature_projection = nn.Sequential()
1000
+
1001
+ self.neck_features_proj.append(feature_projection)
1002
+
1003
+ if i>0 and downsample_enabled[i]:
1004
+ upsample_ratio *= 2
1005
+
1006
+ def forward(self, x, il_level=-1, full_features=None):
1007
+ if self.neck_start_stage > il_level:
1008
+ return full_features
1009
+
1010
+ if full_features is None:
1011
+ full_features = self.neck_features_proj[il_level - self.neck_start_stage](x)
1012
+ else:
1013
+ #upsample torch tensor x to match full_features size, and add to full_features
1014
+ feature_projection = self.neck_features_proj[il_level - self.neck_start_stage](x)
1015
+ if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
1016
+ feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
1017
+ full_features = full_features + feature_projection
1018
+ return full_features
1019
+
1020
+ class ERADIO(nn.Module):
1021
+ """
1022
+ Efficient RADIO
1023
+ """
1024
+
1025
+ def __init__(self,
1026
+ dim,
1027
+ in_dim,
1028
+ depths,
1029
+ window_size,
1030
+ mlp_ratio,
1031
+ num_heads,
1032
+ drop_path_rate=0.2,
1033
+ in_chans=3,
1034
+ num_classes=1000,
1035
+ qkv_bias=False,
1036
+ qk_scale=None,
1037
+ layer_scale=None,
1038
+ layer_scale_conv=None,
1039
+ layer_norm_last=False,
1040
+ sr_ratio = [1, 1, 1, 1],
1041
+ max_depth = -1,
1042
+ conv_base=False,
1043
+ use_swiglu=False,
1044
+ multi_query=False,
1045
+ norm_layer=nn.LayerNorm,
1046
+ drop_uniform=False,
1047
+ yolo_arch=False,
1048
+ shuffle_down=False,
1049
+ downsample_shuffle=False,
1050
+ return_full_features=False,
1051
+ full_features_head_dim=128,
1052
+ neck_start_stage=1,
1053
+ use_neck=False,
1054
+ use_shift=False,
1055
+ cpb_mlp_hidden=512,
1056
+ conv_groups_ratio=0,
1057
+ verbose: bool = False,
1058
+ **kwargs):
1059
+ """
1060
+ Args:
1061
+ dim: feature size dimension.
1062
+ depths: number of layers in each stage.
1063
+ window_size: window size in each stage.
1064
+ mlp_ratio: MLP ratio.
1065
+ num_heads: number of heads in each stage.
1066
+ drop_path_rate: drop path rate.
1067
+ in_chans: number of input channels.
1068
+ num_classes: number of classes.
1069
+ qkv_bias: bool argument for query, key, value learnable bias.
1070
+ qk_scale: bool argument to scaling query, key.
1071
+ drop_rate: dropout rate.
1072
+ attn_drop_rate: attention dropout rate.
1073
+ norm_layer: normalization layer.
1074
+ layer_scale: layer scaling coefficient.
1075
+ return_full_features: output dense features as well as logits
1076
+ full_features_head_dim: number of channels in the dense features head
1077
+ neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0
1078
+ for 224 resolution, the output of the stage before downsample:
1079
+ stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7
1080
+ use_neck: even for summarization embedding use neck
1081
+ use_shift: SWIN like window shifting but without masking attention
1082
+ conv_groups_ratio: will be used for conv blocks where there is no multires attention,
1083
+ if 0 then normal conv,
1084
+ if 1 then channels are independent,
1085
+ if -1 then no conv at all
1086
+
1087
+ """
1088
+ super().__init__()
1089
+
1090
+ num_features = int(dim * 2 ** (len(depths) - 1))
1091
+ self.num_classes = num_classes
1092
+ self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down)
1093
+ # set return_full_features true if we want to return full features from all stages
1094
+ self.return_full_features = return_full_features
1095
+ self.use_neck = use_neck
1096
+
1097
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
1098
+ if drop_uniform:
1099
+ dpr = [drop_path_rate for x in range(sum(depths))]
1100
+
1101
+ if not isinstance(max_depth, list): max_depth = [max_depth] * len(depths)
1102
+
1103
+ self.levels = nn.ModuleList()
1104
+ for i in range(len(depths)):
1105
+ conv = True if (i == 0 or i == 1) else False
1106
+
1107
+ level = ERADIOLayer(dim=int(dim * 2 ** i),
1108
+ depth=depths[i],
1109
+ num_heads=num_heads[i],
1110
+ window_size=window_size[i],
1111
+ mlp_ratio=mlp_ratio,
1112
+ qkv_bias=qkv_bias,
1113
+ qk_scale=qk_scale,
1114
+ conv=conv,
1115
+ drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
1116
+ downsample=(i < len(depths) - 1),
1117
+ layer_scale=layer_scale,
1118
+ layer_scale_conv=layer_scale_conv,
1119
+ sr_ratio=sr_ratio[i],
1120
+ use_swiglu=use_swiglu,
1121
+ multi_query=multi_query,
1122
+ norm_layer=norm_layer,
1123
+ yolo_arch=yolo_arch,
1124
+ downsample_shuffle=downsample_shuffle,
1125
+ conv_base=conv_base,
1126
+ cpb_mlp_hidden=cpb_mlp_hidden,
1127
+ use_shift=use_shift,
1128
+ conv_groups_ratio=conv_groups_ratio,
1129
+ verbose=verbose)
1130
+
1131
+ self.levels.append(level)
1132
+
1133
+ if self.return_full_features or self.use_neck:
1134
+ #num_heads
1135
+ downsample_enabled = [self.levels[i-1].downsample is not None for i in range(len(self.levels))]
1136
+ self.high_res_neck = HiResNeck(dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled)
1137
+
1138
+ self.switched_to_deploy = False
1139
+
1140
+ self.norm = LayerNorm2d(num_features) if layer_norm_last else nn.BatchNorm2d(num_features)
1141
+ self.avgpool = nn.AdaptiveAvgPool2d(1)
1142
+ self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
1143
+ self.apply(self._init_weights)
1144
+
1145
+ def _init_weights(self, m):
1146
+ if isinstance(m, nn.Linear):
1147
+ trunc_normal_(m.weight, std=.02)
1148
+ if isinstance(m, nn.Linear) and m.bias is not None:
1149
+ nn.init.constant_(m.bias, 0)
1150
+ elif isinstance(m, nn.LayerNorm):
1151
+ nn.init.constant_(m.bias, 0)
1152
+ nn.init.constant_(m.weight, 1.0)
1153
+ elif isinstance(m, LayerNorm2d):
1154
+ nn.init.constant_(m.bias, 0)
1155
+ nn.init.constant_(m.weight, 1.0)
1156
+ elif isinstance(m, nn.BatchNorm2d):
1157
+ nn.init.ones_(m.weight)
1158
+ nn.init.zeros_(m.bias)
1159
+
1160
+ @torch.jit.ignore
1161
+ def no_weight_decay_keywords(self):
1162
+ return {'rpb'}
1163
+
1164
+ def forward_features(self, x):
1165
+ _, _, H, W = x.shape
1166
+ if H % 32 != 0 or W % 32 != 0:
1167
+ raise ValueError(f"E-RADIO requires input dimensions to be divisible by 32 but got H x W: {H} x {W}")
1168
+ x = self.patch_embed(x)
1169
+ full_features = None
1170
+ for il, level in enumerate(self.levels):
1171
+ x, pre_downsample_x = level(x)
1172
+
1173
+ if self.return_full_features or self.use_neck:
1174
+ full_features = self.high_res_neck(pre_downsample_x, il, full_features)
1175
+
1176
+ # x = self.norm(full_features if (self.return_full_features or self.use_neck) else x)
1177
+ x = self.norm(x) # new version for
1178
+
1179
+ if not self.return_full_features:
1180
+ return x, None
1181
+
1182
+ return x, full_features
1183
+
1184
+ def forward(self, x):
1185
+ x, full_features = self.forward_features(x)
1186
+
1187
+ x = self.avgpool(x)
1188
+ x = torch.flatten(x, 1)
1189
+
1190
+ x = self.head(x)
1191
+ if full_features is not None:
1192
+ return x, full_features
1193
+ return x
1194
+
1195
+ def switch_to_deploy(self):
1196
+ '''
1197
+ A method to perform model self-compression
1198
+ merges BN into conv layers
1199
+ converts MLP relative positional bias into precomputed buffers
1200
+ '''
1201
+ if not self.switched_to_deploy:
1202
+ for level in [self.patch_embed, self.levels, self.head]:
1203
+ for module in level.modules():
1204
+ if hasattr(module, 'switch_to_deploy'):
1205
+ module.switch_to_deploy()
1206
+ self.switched_to_deploy = True
1207
+
1208
+
1209
+ def change_window_size(self, new_window_size):
1210
+ """
1211
+ E-RADIO employs windowed attention, which may be sensitive to the choice of this parameter,
1212
+ especially in cases of uneven partitioning of the feature maps.
1213
+ E-RADIO allows for the adjustment of the window size after training,
1214
+ making it adaptable to different input image resolutions.
1215
+ The recommended values for window size based on input resolution are as follows:
1216
+
1217
+ Input Resolution | Window Size
1218
+ 224 | 7
1219
+ 256 | 8
1220
+ 386 | 12
1221
+ 512 | 16
1222
+ Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
1223
+ img_res/16/2
1224
+ for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
1225
+ Manual way to change resolution -> model.change_window_size(resolution)
1226
+ """
1227
+ window_size = new_window_size
1228
+ print(f"Setting window size to {window_size}")
1229
+ for module in self.modules():
1230
+ if hasattr(module, "window_size"):
1231
+ # check if tuple or a number
1232
+ if isinstance(module.window_size, tuple):
1233
+ if module.window_size[0] != window_size:
1234
+ module.window_size = (window_size, window_size)
1235
+ elif isinstance(module.window_size, list):
1236
+ if module.window_size[0] != window_size:
1237
+ module.window_size = [window_size, window_size]
1238
+ else:
1239
+ module.window_size = window_size
1240
+
1241
+
1242
+ def set_optimal_window_size(self, image_dim, max_window_size = 16):
1243
+ """
1244
+ Using hand picked window size for various resolutions.
1245
+
1246
+ E-RADIO employs windowed attention, which may be sensitive to the choice of this parameter,
1247
+ especially in cases of uneven partitioning of the feature maps.
1248
+ E-RADIO allows for the adjustment of the window size after training,
1249
+ making it adaptable to different input image resolutions.
1250
+ The recommended values for window size based on input resolution are as follows:
1251
+
1252
+ Input Resolution | Window Size
1253
+ 224 | 7
1254
+ 256 | 8
1255
+ 386 | 12
1256
+ 512 | 16
1257
+ Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
1258
+ img_res/16/2
1259
+ for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
1260
+ Manual way to change resolution -> model.change_window_size(resolution)
1261
+
1262
+ """
1263
+ # import math
1264
+
1265
+ def divisorGenerator(n):
1266
+ large_divisors = []
1267
+ for i in range(1, int(math.sqrt(n) + 1)):
1268
+ if n % i == 0:
1269
+ yield i
1270
+ if i*i != n:
1271
+ large_divisors.append(n / i)
1272
+ for divisor in reversed(large_divisors):
1273
+ yield divisor
1274
+
1275
+ if isinstance(image_dim, list) or isinstance(image_dim, tuple):
1276
+ image_dim = min(image_dim)
1277
+
1278
+ # we do windowed attention in the 3rd stage for the first time, therefore //16,
1279
+ # we do subsampled attention with downsample by 2 so need to get //32 actually
1280
+ # ideally we should rewrite this to be dependent on the structure of the model like what if subsampled is removed etc
1281
+ all_divisors = np.array(list(divisorGenerator(image_dim//32)))
1282
+ new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
1283
+
1284
+ # for image_dim in [128, 224, 256, 384, 512, 768, 1024]:
1285
+ # all_divisors = np.array(list(divisorGenerator(image_dim//32)))
1286
+ # new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
1287
+ # print(f"Setting window size to {new_window_size} for image resolution {image_dim}")
1288
+
1289
+ self.change_window_size(new_window_size = new_window_size)
1290
+
1291
+
1292
+ @register_model
1293
+ def eradio_large_fullres_ws16(pretrained=False, **kwargs):
1294
+ model = ERADIO(
1295
+ depths=[3, 3, 5, 5],
1296
+ num_heads=[2, 4, 8, 16],
1297
+ window_size=[None, None, [16, 16], 16],
1298
+ dim=192,
1299
+ in_dim=64,
1300
+ mlp_ratio=4,
1301
+ drop_path_rate=0.0,
1302
+ sr_ratio=[1, 1, [2, 1], 1],
1303
+ use_swiglu=False,
1304
+ yolo_arch=True,
1305
+ shuffle_down=False,
1306
+ conv_base=True,
1307
+ use_neck=True,
1308
+ full_features_head_dim=1536,
1309
+ neck_start_stage=2,
1310
+ **kwargs,
1311
+ )
1312
+ if pretrained:
1313
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1314
+ return model
1315
+
1316
+
1317
+ @register_model
1318
+ def eradio_xxxtiny(pretrained=False, **kwargs): # ,
1319
+ model = ERADIO(
1320
+ depths=[1, 3, 4, 5],
1321
+ num_heads=[2, 4, 8, 16],
1322
+ window_size=[None, None, [16, 16], 16],
1323
+ dim=32,
1324
+ in_dim=32,
1325
+ mlp_ratio=4,
1326
+ drop_path_rate=0.0,
1327
+ sr_ratio=[1, 1, [2, 1], 1],
1328
+ use_swiglu=False,
1329
+ yolo_arch=True,
1330
+ shuffle_down=False,
1331
+ conv_base=True,
1332
+ use_neck=True,
1333
+ full_features_head_dim=256,
1334
+ neck_start_stage=2,
1335
+ **kwargs,
1336
+ )
1337
+ if pretrained:
1338
+ model.load_state_dict(torch.load(pretrained))
1339
+ return model
1340
+
1341
+ @register_model
1342
+ def eradio_xxxtiny_8x_ws12(pretrained=False, **kwargs):
1343
+ model = ERADIO(depths=[1, 3, 4, 5],
1344
+ num_heads=[2, 4, 8, 16],
1345
+ window_size=[None, None, [12, 12], 12],
1346
+ dim=32,
1347
+ in_dim=32,
1348
+ mlp_ratio=4,
1349
+ drop_path_rate=0.0,
1350
+ sr_ratio=[1, 1, [2, 1], 1],
1351
+ use_swiglu=False,
1352
+ downsample_shuffle=False,
1353
+ yolo_arch=True,
1354
+ shuffle_down=False,
1355
+ cpb_mlp_hidden=64,
1356
+ use_neck=True,
1357
+ full_features_head_dim=256,
1358
+ neck_start_stage=2,
1359
+ conv_groups_ratio = 1,
1360
+ **kwargs)
1361
+ if pretrained:
1362
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1363
+ return model
1364
+
1365
+
1366
+ @register_model
1367
+ def eradio_xxxtiny_8x_ws16(pretrained=False, **kwargs):
1368
+ model = ERADIO(depths=[1, 3, 4, 5],
1369
+ num_heads=[2, 4, 8, 16],
1370
+ window_size=[None, None, [16, 16], 16],
1371
+ dim=32,
1372
+ in_dim=32,
1373
+ mlp_ratio=4,
1374
+ drop_path_rate=0.0,
1375
+ sr_ratio=[1, 1, [2, 1], 1],
1376
+ use_swiglu=False,
1377
+ downsample_shuffle=False,
1378
+ yolo_arch=True,
1379
+ shuffle_down=False,
1380
+ cpb_mlp_hidden=64,
1381
+ use_neck=True,
1382
+ full_features_head_dim=256,
1383
+ neck_start_stage=1,
1384
+ conv_groups_ratio = 1,
1385
+ **kwargs)
1386
+ if pretrained:
1387
+ model.load_state_dict(torch.load(pretrained)["state_dict"])
1388
+ return model
1389
+
1390
+ @register_model
1391
+ def eradio(pretrained=False, **kwargs):
1392
+ return eradio_large_fullres_ws16(pretrained=pretrained, **kwargs)
extra_models.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from distutils.version import LooseVersion
2
+ from types import MethodType
3
+ from typing import List, Optional, Tuple, Union
4
+ import warnings
5
+
6
+ import torch
7
+ from torch import nn
8
+ import torch.nn.functional as F
9
+
10
+ from timm.models.registry import register_model
11
+ from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
12
+
13
+ from .forward_intermediates import forward_intermediates
14
+ from .input_conditioner import InputConditioner
15
+
16
+ _has_torch_sdpa = hasattr(F, 'scaled_dot_product_attention')
17
+
18
+
19
+ class PaliGemmaWrapper(nn.Module):
20
+ def __init__(self, vis_model: nn.Module, embed_dim: int):
21
+ super().__init__()
22
+
23
+ self.vis_model = vis_model
24
+ self.embed_dim = embed_dim
25
+
26
+ @property
27
+ def patch_size(self):
28
+ return self.vis_model.embeddings.patch_size
29
+
30
+ @property
31
+ def blocks(self):
32
+ return self.vis_model.encoder.layers
33
+
34
+ @property
35
+ def embed_dim(self):
36
+ return self.vis_model.embeddings.embed_dim
37
+
38
+ def forward(self, x: torch.Tensor):
39
+ outputs = self.vis_model(
40
+ x,
41
+ return_dict=False,
42
+ interpolate_pos_encoding=True,
43
+ )
44
+
45
+ features = outputs[0].to(torch.float32)
46
+
47
+ summary = features.mean(dim=1)
48
+
49
+ return summary, features
50
+
51
+ def forward_features(self, x: torch.Tensor):
52
+ return self(x)
53
+
54
+
55
+ def _get_paligemma_model(repo: str, embed_dim: int = None, dtype: torch.dtype = torch.bfloat16):
56
+ from transformers import PaliGemmaForConditionalGeneration, __version__ as tx_version
57
+
58
+ if LooseVersion(tx_version) > LooseVersion('4.44.2'):
59
+ warnings.warn(f'Your transformers version "{tx_version}" is higher than 4.44.2, and for whatever reason, PaliGemma might be broken.')
60
+
61
+ extra_args = dict()
62
+
63
+ if dtype is not None:
64
+ extra_args['torch_dtype'] = dtype
65
+ rev = str(dtype).split('.')[-1]
66
+ extra_args['revision'] = rev
67
+
68
+ model = PaliGemmaForConditionalGeneration.from_pretrained(repo, **extra_args)
69
+
70
+ vis_model = model.vision_tower.vision_model
71
+
72
+ vis_model = PaliGemmaWrapper(vis_model, embed_dim)
73
+
74
+ return vis_model
75
+
76
+ @register_model
77
+ def paligemma_896_student(**kwargs):
78
+ model = _get_paligemma_model('google/paligemma-3b-pt-896', embed_dim=1152, dtype=None)
79
+
80
+ return model
81
+
82
+
83
+ def dv2_sdpa(self, x: torch.Tensor) -> torch.Tensor:
84
+ B, N, C = x.shape
85
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
86
+
87
+ q, k, v = qkv[0], qkv[1], qkv[2]
88
+ x = F.scaled_dot_product_attention(
89
+ q, k, v,
90
+ is_causal=False,
91
+ dropout_p=self.attn_drop.p if self.training else 0.,
92
+ scale=self.scale,
93
+ )
94
+ x = x.transpose(1, 2).reshape(B, N, C)
95
+ x = self.proj(x)
96
+ x = self.proj_drop(x)
97
+ return x
98
+
99
+ def _load_dino_v2(dino_v2_model, cache_dir: Optional[str] = None, pretrained=True, **kwargs):
100
+ if cache_dir:
101
+ torch.hub.set_dir(cache_dir)
102
+ model: nn.Module = torch.hub.load(
103
+ 'facebookresearch/dinov2',
104
+ dino_v2_model,
105
+ pretrained=pretrained,
106
+ # **kwargs,
107
+ )
108
+
109
+ if _has_torch_sdpa:
110
+ for n, m in model.named_modules():
111
+ if n.endswith('.attn'):
112
+ m.forward = MethodType(dv2_sdpa, m)
113
+
114
+ return model
115
+
116
+ class DinoWrapper(nn.Module):
117
+ def __init__(self, dino_model: nn.Module):
118
+ super().__init__()
119
+
120
+ self.inner = dino_model
121
+ dino_model.blocks = nn.Sequential(*dino_model.blocks)
122
+
123
+ @property
124
+ def embed_dim(self):
125
+ return self.inner.embed_dim
126
+
127
+ @property
128
+ def patch_size(self):
129
+ return self.inner.patch_size
130
+
131
+ @property
132
+ def num_cls_tokens(self):
133
+ return getattr(self.inner, 'num_tokens', 1)
134
+
135
+ @property
136
+ def num_registers(self):
137
+ return getattr(self.inner, 'num_register_tokens', 0)
138
+
139
+ @property
140
+ def num_summary_tokens(self):
141
+ return self.num_cls_tokens + self.num_registers
142
+
143
+ @property
144
+ def blocks(self):
145
+ return self.inner.blocks
146
+
147
+ def forward(self, *args, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
148
+ parts = self.inner.forward_features(*args, **kwargs)
149
+
150
+ cls_token = parts['x_norm_clstoken']
151
+ features = parts['x_norm_patchtokens']
152
+
153
+ return cls_token, features
154
+
155
+ def forward_features(self, x: torch.Tensor):
156
+ x = self.inner.prepare_tokens_with_masks(x)
157
+ x = self.inner.blocks(x)
158
+ x_norm = self.inner.norm(x)
159
+
160
+ return x_norm[:, 0], x_norm[:, self.num_summary_tokens:]
161
+
162
+ def patchify(self, x: torch.Tensor) -> torch.Tensor:
163
+ return self.inner.prepare_tokens_with_masks(x)
164
+
165
+ def forward_intermediates(self,
166
+ x: torch.Tensor,
167
+ norm: bool = False,
168
+ **kwargs,
169
+ ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
170
+ return forward_intermediates(
171
+ self,
172
+ patch_extractor=self.inner.prepare_tokens_with_masks,
173
+ num_summary_tokens=self.num_summary_tokens,
174
+ num_cls_tokens=self.num_cls_tokens,
175
+ norm=self.inner.norm if norm else lambda y: y,
176
+ x=x,
177
+ **kwargs,
178
+ )
179
+
180
+
181
+ def _dino_student(arch: str, **kwargs):
182
+ from . import dinov2_arch
183
+
184
+ factory = getattr(dinov2_arch, arch)
185
+ model = factory()
186
+
187
+ model = DinoWrapper(model)
188
+
189
+ conditioner = InputConditioner(
190
+ input_scale=1.0,
191
+ norm_mean=IMAGENET_DEFAULT_MEAN,
192
+ norm_std=IMAGENET_DEFAULT_STD,
193
+ )
194
+
195
+ model.input_conditioner = conditioner
196
+
197
+ return model
198
+
199
+
200
+ @register_model
201
+ def dino_v2_l_student(**kwargs):
202
+ return _dino_student('dinov2_vitl14_reg', **kwargs)
203
+
204
+ @register_model
205
+ def dino_v2_g_student(**kwargs):
206
+ return _dino_student('dinov2_vitg14_reg', **kwargs)
extra_timm_models.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import math
10
+ import warnings
11
+
12
+ import torch
13
+ from torch import nn
14
+ from torch.nn import functional as F
15
+
16
+ from timm.models import register_model
17
+ from timm.models.vision_transformer import (
18
+ VisionTransformer,
19
+ _create_vision_transformer as _timm_create_vision_transformer,
20
+ Mlp,
21
+ Block,
22
+ LayerScale as TIMMLayerScale,
23
+ )
24
+
25
+ # Import these to also register them
26
+ from . import dinov2_arch
27
+
28
+
29
+ @register_model
30
+ def vit_tiny_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
31
+ """ ViT-Tiny (Vit-Ti/16)
32
+ """
33
+ model_args = dict(patch_size=14, embed_dim=192, depth=12, num_heads=3)
34
+ model = _create_vision_transformer('vit_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
35
+ return model
36
+
37
+
38
+ @register_model
39
+ def vit_small_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
40
+ """ ViT-Small (ViT-S/16)
41
+ """
42
+ model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6)
43
+ model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
44
+ return model
45
+
46
+
47
+ @register_model
48
+ def vit_base_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
49
+ """ ViT-Base (ViT-B/14) from original paper (https://arxiv.org/abs/2010.11929).
50
+ ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
51
+ """
52
+ model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12)
53
+ model = _create_vision_transformer('vit_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
54
+ return model
55
+
56
+
57
+ @register_model
58
+ def vit_large_patch16_v2_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
59
+ """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
60
+ ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
61
+ """
62
+ name = 'vit_large_patch14_reg4_dinov2'
63
+ model_args = dict(
64
+ patch_size=16, embed_dim=1024, depth=24, num_heads=16, init_values=1e-5,
65
+ reg_tokens=4, no_embed_class=True, img_size=518 * 16 // 14
66
+ )
67
+ model = _create_vision_transformer(name, pretrained=pretrained, **dict(model_args, **kwargs))
68
+
69
+ return model
70
+
71
+ @register_model
72
+ def vit_huge_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
73
+ """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
74
+ """
75
+ model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16)
76
+ if pretrained:
77
+ # There is no pretrained version of ViT-H/16, but we can adapt a ViT-H/14 for this purpose
78
+ model = _create_vision_transformer('vit_huge_patch14_224', pretrained=True, **dict(model_args, **kwargs))
79
+ else:
80
+ model = _create_vision_transformer('vit_huge_patch16_224', pretrained=False, **dict(model_args, **kwargs))
81
+ return model
82
+
83
+
84
+ @register_model
85
+ def vit_huge_patch16_224_mlpnorm(pretrained=False, **kwargs) -> VisionTransformer:
86
+ """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
87
+ """
88
+ model = vit_huge_patch16_224(pretrained=pretrained, **kwargs)
89
+
90
+ for m in model.modules():
91
+ if isinstance(m, Mlp) and not isinstance(m.norm, nn.LayerNorm):
92
+ m.norm = nn.LayerNorm(m.fc1.out_features)
93
+
94
+ return model
95
+
96
+
97
+ @register_model
98
+ def vit_giant_patch16_224(pretrained=False, scaled_ln: bool = False, **kwargs) -> VisionTransformer:
99
+ """ ViT-giant model (ViT-g/16) from original paper (https://arxiv.org/abs/2010.11929).
100
+ """
101
+ model_args = dict(patch_size=16, embed_dim=1536, depth=40, num_heads=24)
102
+ model = _create_vision_transformer('vit_giant_patch16_224', pretrained=False, **dict(model_args, **kwargs))
103
+ if scaled_ln:
104
+ _apply_scaled_ln(model)
105
+ return model
106
+
107
+
108
+ @register_model
109
+ def vit_bigG_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
110
+ model_args = dict(patch_size=14, embed_dim=1664, depth=48, num_heads=16, init_values=1e-6)
111
+ model = _create_vision_transformer('vit_bigG_patch14', pretrained=False, **dict(model_args, **kwargs))
112
+ return model
113
+
114
+
115
+ def _create_vision_transformer(*args, **kwargs):
116
+ model = _timm_create_vision_transformer(*args, **kwargs)
117
+ _patch_layer_scale(model)
118
+ return model
119
+
120
+
121
+ def _patch_layer_scale(model: VisionTransformer):
122
+ def replace_ls(old_ls: TIMMLayerScale):
123
+ new_ls = dinov2_arch.LayerScale(old_ls.gamma.shape[0], inplace=old_ls.inplace)
124
+ new_ls.load_state_dict(old_ls.state_dict())
125
+ return new_ls
126
+
127
+ # Monkey patch: Replace TIMM's LayerScale with our modified DINOv2 one, that uses a param name
128
+ # other than gamma, so that HFHub doesn't mess with it!
129
+ for mod in model.modules():
130
+ if isinstance(mod, Block):
131
+ if isinstance(mod.ls1, TIMMLayerScale):
132
+ mod.ls1 = replace_ls(mod.ls1)
133
+ if isinstance(mod.ls2, TIMMLayerScale):
134
+ mod.ls2 = replace_ls(mod.ls2)
135
+ pass
136
+
137
+
138
+ class ScaledLayerNorm(nn.LayerNorm):
139
+ '''
140
+ https://arxiv.org/pdf/2502.05795v1
141
+ '''
142
+ def __init__(self, ln_base: nn.LayerNorm, depth: int = 0):
143
+ super().__init__(ln_base.normalized_shape, eps=ln_base.eps, elementwise_affine=ln_base.elementwise_affine)
144
+ self.load_state_dict(ln_base.state_dict())
145
+ self.register_buffer('ln_scale', torch.tensor(1.0 / math.sqrt(depth)), persistent=False)
146
+
147
+ def forward(self, x):
148
+ y = super().forward(x)
149
+ y = y * self.ln_scale
150
+ return y
151
+
152
+
153
+ class DyT(nn.Module):
154
+ def __init__(self, C: int, init_alpha: float):
155
+ super().__init__()
156
+ self.alpha = nn.Parameter(torch.full((1,), init_alpha))
157
+ self.gamma = nn.Parameter(torch.ones(C))
158
+ self.beta = nn.Parameter(torch.zeros(C))
159
+
160
+ def forward(self, x: torch.Tensor):
161
+ x = F.tanh(self.alpha * x)
162
+ return self.gamma * x + self.beta
163
+
164
+ @register_model
165
+ def vit_large_dyt_patch16_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
166
+ """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
167
+ ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
168
+ """
169
+ model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16)
170
+ model = _create_vision_transformer('vit_large_dyt_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
171
+
172
+ def _replace_ln_with_dyt(ln: nn.LayerNorm, depth: int):
173
+ return DyT(ln.normalized_shape[0], init_alpha=0.9)
174
+ _replace_ln(model, _replace_ln_with_dyt)
175
+
176
+ return model
177
+
178
+
179
+ def _apply_scaled_ln(model: VisionTransformer):
180
+ warnings.warn('Post-LayerNorm scaling activated!')
181
+
182
+ _replace_ln(model, lambda ln, depth: ScaledLayerNorm(ln, depth=depth))
183
+
184
+ def _replace_ln(model: VisionTransformer, fn):
185
+ def _inner_replace_ln(block: Block, depth: int, key: str):
186
+ prev = getattr(block, key)
187
+ if isinstance(prev, nn.LayerNorm):
188
+ setattr(block, key, fn(prev, depth=depth))
189
+
190
+ for i, block in enumerate(model.blocks):
191
+ _inner_replace_ln(block, i + 1, 'norm1')
192
+ _inner_replace_ln(block, i + 1, 'norm2')
feature_normalizer.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from collections import namedtuple
9
+ from typing import NamedTuple, Optional, Tuple
10
+ import torch
11
+ from torch import nn
12
+
13
+
14
+ def _run_kernel(x: torch.Tensor, mean: torch.Tensor, tx: torch.Tensor):
15
+ if x.ndim <= 3:
16
+ x = x - mean
17
+ x = x @ tx.T
18
+ elif x.ndim == 4:
19
+ x = x - mean.reshape(1, -1, 1, 1)
20
+ kernel = tx.reshape(*tx.shape, 1, 1)
21
+ x = torch.nn.functional.conv2d(x, weight=kernel, bias=None, stride=1, padding=0)
22
+ else:
23
+ raise ValueError(f'Unsupported input dimension: {x.ndim}, shape: {x.shape}')
24
+ return x
25
+
26
+
27
+ class FeatureNormalizer(nn.Module):
28
+ def __init__(self, embed_dim: int, dtype: torch.dtype = torch.float32):
29
+ super().__init__()
30
+
31
+ self.register_buffer('mean', torch.zeros(embed_dim, dtype=dtype))
32
+ self.register_buffer('tx', torch.eye(embed_dim, dtype=dtype))
33
+
34
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
35
+ x = _run_kernel(x, self.mean, self.tx)
36
+ return x
37
+
38
+
39
+ class InterFeatState(NamedTuple):
40
+ y: torch.Tensor
41
+ alpha: torch.Tensor
42
+
43
+
44
+ class IntermediateFeatureNormalizerBase(nn.Module):
45
+ def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
46
+ raise NotImplementedError()
47
+
48
+
49
+ class IntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
50
+ def __init__(self, num_intermediates: int, embed_dim: int, rot_per_layer: bool = False, dtype: torch.dtype = torch.float32):
51
+ super().__init__()
52
+ self.register_buffer('alphas', torch.ones(num_intermediates, dtype=dtype))
53
+
54
+ rot = torch.eye(embed_dim, dtype=dtype)
55
+ if rot_per_layer:
56
+ rot = rot.unsqueeze(0).repeat(num_intermediates, 1, 1)
57
+
58
+ self.register_buffer('rotation', rot.contiguous())
59
+ self.register_buffer('means', torch.zeros(num_intermediates, embed_dim, dtype=dtype))
60
+
61
+ def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
62
+ if rot_index is None:
63
+ rot_index = index
64
+
65
+ if skip:
66
+ assert x.ndim == 3, f'Cannot use the `skip` parameter when the `x` tensor isn\'t 3-dimensional.'
67
+ prefix, x = x[:, :skip], x[:, skip:]
68
+
69
+ rotation = self._get_rotation(rot_index)
70
+ y = _run_kernel(x, self.means[index], rotation)
71
+
72
+ alpha = self.alphas[index]
73
+ if skip:
74
+ alpha = torch.cat([
75
+ torch.ones(skip, dtype=alpha.dtype, device=alpha.device),
76
+ alpha[None].expand(y.shape[1]),
77
+ ]).reshape(1, -1, 1)
78
+ y = torch.cat([prefix, y], dim=1)
79
+ else:
80
+ if x.ndim == 3:
81
+ alpha = alpha.reshape(1, 1, 1).expand(1, y.shape[1], 1)
82
+ elif x.ndim == 4:
83
+ alpha = alpha.reshape(1, 1, 1, 1).expand(1, 1, *y.shape[2:])
84
+ else:
85
+ raise ValueError(f'Unsupported input dimension: {x.ndim}')
86
+
87
+ return InterFeatState(y, alpha)
88
+
89
+ def _get_rotation(self, rot_index: int) -> torch.Tensor:
90
+ if self.rotation.ndim == 2:
91
+ return self.rotation
92
+ return self.rotation[rot_index]
93
+
94
+
95
+ class NullIntermediateFeatureNormalizer(IntermediateFeatureNormalizerBase):
96
+ instances = dict()
97
+
98
+ def __init__(self, dtype: torch.dtype, device: torch.device):
99
+ super().__init__()
100
+ self.register_buffer('alpha', torch.tensor(1, dtype=dtype, device=device))
101
+
102
+ @staticmethod
103
+ def get_instance(dtype: torch.dtype, device: torch.device):
104
+ instance = NullIntermediateFeatureNormalizer.instances.get((dtype, device), None)
105
+ if instance is None:
106
+ instance = NullIntermediateFeatureNormalizer(dtype, device)
107
+ NullIntermediateFeatureNormalizer.instances[(dtype, device)] = instance
108
+ return instance
109
+
110
+ def forward(self, x: torch.Tensor, index: int, rot_index: int = None, skip: Optional[int] = None) -> InterFeatState:
111
+ return InterFeatState(x, self.alpha)
forward_intermediates.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from typing import Callable, Dict, List, Optional, Set, Tuple, Union, Any, Iterable
10
+ from types import MethodType
11
+
12
+ import torch
13
+ from torch import nn
14
+
15
+ from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer
16
+
17
+
18
+ def _take_indices(
19
+ num_blocks: int,
20
+ n: Optional[Union[int, List[int], Tuple[int]]],
21
+ ) -> Tuple[Set[int], int]:
22
+ if isinstance(n, int):
23
+ assert n >= 0
24
+ take_indices = {x for x in range(num_blocks - n, num_blocks)}
25
+ else:
26
+ take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
27
+ return take_indices, max(take_indices)
28
+
29
+
30
+ def forward_intermediates(
31
+ model: nn.Module,
32
+ patch_extractor: Callable[[torch.Tensor], torch.Tensor],
33
+ norm: nn.Module,
34
+ num_summary_tokens: int,
35
+ num_cls_tokens: int,
36
+ x: torch.Tensor,
37
+ indices: Optional[Union[int, List[int], Tuple[int]]] = None,
38
+ return_prefix_tokens: bool = False,
39
+ stop_early: bool = False,
40
+ output_fmt: str = 'NCHW',
41
+ intermediates_only: bool = False,
42
+ aggregation: Optional[str] = "sparse",
43
+ inter_feature_normalizer: Optional[IntermediateFeatureNormalizerBase] = None,
44
+ norm_alpha_scheme = "post-alpha",
45
+ block_kwargs: Dict = None,
46
+ ) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
47
+ """ Forward features that returns intermediates.
48
+
49
+ The Dense layer aggregation method is inspired from the paper: "Dense Connector for MLLMs"
50
+ by Yao, Huanjin et al. (2024). arXiv preprint arXiv:2405.13800}
51
+
52
+ Args:
53
+ x: Input image tensor
54
+ indices: Take last n blocks if int, select matching indices if sequence
55
+ return_prefix_tokens: Return both prefix and spatial intermediate tokens
56
+ norm: Apply norm layer to all intermediates
57
+ stop_early: Stop iterating over blocks when last desired intermediate hit
58
+ output_fmt: Shape of intermediate feature outputs
59
+ intermediates_only: Only return intermediate features
60
+ aggregation: intermediate layer aggregation method (sparse or dense)
61
+ norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha")
62
+ Returns:
63
+ """
64
+ assert output_fmt in ('NCHW', 'NLC'), 'Output format must be one of NCHW or NLC.'
65
+ assert aggregation in ('sparse', 'dense'), 'Aggregation must be one of sparse or dense.'
66
+ reshape = output_fmt == 'NCHW'
67
+ intermediates = []
68
+
69
+ block_kwargs = block_kwargs or dict()
70
+
71
+ blocks = model.blocks
72
+
73
+ take_indices, max_index = _take_indices(len(blocks), indices)
74
+ take_indices = sorted(take_indices)
75
+ # forward pass
76
+ B, _, height, width = x.shape
77
+
78
+ x = patch_extractor(x)
79
+
80
+ if stop_early:
81
+ blocks = blocks[:max_index + 1]
82
+
83
+ if inter_feature_normalizer is None or norm_alpha_scheme == 'none':
84
+ inter_feature_normalizer = NullIntermediateFeatureNormalizer.get_instance(x.dtype, x.device)
85
+
86
+ assert norm_alpha_scheme in ('none', 'pre-alpha', 'post-alpha'), f'Unsupported alpha scheme: {norm_alpha_scheme}'
87
+ post_alpha_scheme = norm_alpha_scheme == 'post-alpha'
88
+
89
+ accumulator = 0
90
+ alpha_sum = 0
91
+ num_accumulated = 0
92
+
93
+ take_off = 0
94
+
95
+ for i, blk in enumerate(blocks):
96
+ x = blk(x, **block_kwargs)
97
+ if aggregation == "dense":
98
+ # Arbitrarily use the rotation matrix from the final layer in the dense group
99
+ y, alpha = inter_feature_normalizer(x, i, rot_index=take_indices[take_off], skip=num_summary_tokens)
100
+ if post_alpha_scheme:
101
+ accumulator = accumulator + y
102
+ alpha_sum = alpha_sum + alpha
103
+ else:
104
+ accumulator = accumulator + (alpha * y)
105
+ alpha_sum += 1
106
+ num_accumulated += 1
107
+ if i == take_indices[take_off]:
108
+ if aggregation == "dense":
109
+ alpha = alpha_sum / num_accumulated
110
+ x_ = alpha * accumulator / num_accumulated
111
+ num_accumulated = 0
112
+ accumulator = 0
113
+ alpha_sum = 0
114
+ else:
115
+ y, alpha = inter_feature_normalizer(x, i, skip=num_summary_tokens)
116
+ x_ = alpha * y
117
+ # normalize intermediates with final norm layer if enabled
118
+ intermediates.append(norm(x_))
119
+ take_off = min(take_off + 1, len(take_indices) - 1)
120
+
121
+ # process intermediates
122
+
123
+ # split prefix (e.g. class, distill) and spatial feature tokens
124
+ prefix_tokens = [y[:, :num_cls_tokens] for y in intermediates]
125
+ intermediates = [y[:, num_summary_tokens:] for y in intermediates]
126
+
127
+ if reshape:
128
+ # reshape to BCHW output format
129
+ H = height // model.patch_size
130
+ W = width // model.patch_size
131
+ intermediates = [y.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() for y in intermediates]
132
+ if not torch.jit.is_scripting() and return_prefix_tokens:
133
+ # return_prefix not support in torchscript due to poor type handling
134
+ intermediates = list(zip(prefix_tokens, intermediates))
135
+ if intermediates_only:
136
+ return intermediates
137
+ x = norm(x)
138
+ return x, intermediates
hf_model.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from collections import namedtuple
15
+ from typing import Callable, Dict, Optional, List, Union
16
+
17
+ from timm.models import VisionTransformer
18
+ import torch
19
+ from torch import nn
20
+ from transformers import PretrainedConfig, PreTrainedModel
21
+
22
+
23
+ from .common import RESOURCE_MAP, DEFAULT_VERSION
24
+
25
+ # Import all required modules.
26
+ from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
27
+ from .adaptor_generic import GenericAdaptor, AdaptorBase
28
+ from .adaptor_mlp import create_mlp_from_config
29
+ from .adaptor_registry import adaptor_registry
30
+ from .cls_token import ClsToken
31
+ from .enable_cpe_support import enable_cpe
32
+ from .enable_spectral_reparam import configure_spectral_reparam_from_args
33
+ from .eradio_model import eradio
34
+ from .radio_model import create_model_from_args
35
+ from .radio_model import RADIOModel as RADIOModelBase, Resolution
36
+ from .input_conditioner import get_default_conditioner, InputConditioner
37
+ from .open_clip_adaptor import OpenCLIP_RADIO
38
+ from .vit_patch_generator import ViTPatchGenerator
39
+ from .vitdet import apply_vitdet_arch, VitDetArgs
40
+
41
+ # Register extra models
42
+ from .extra_timm_models import *
43
+
44
+
45
+ class RADIOConfig(PretrainedConfig):
46
+ """Pretrained Hugging Face configuration for RADIO models."""
47
+
48
+ def __init__(
49
+ self,
50
+ args: Optional[dict] = None,
51
+ version: Optional[str] = DEFAULT_VERSION,
52
+ patch_size: Optional[int] = None,
53
+ max_resolution: Optional[int] = None,
54
+ preferred_resolution: Optional[Resolution] = None,
55
+ adaptor_names: Union[str, List[str]] = None,
56
+ adaptor_configs: Dict[str, Dict[str, int]] = None,
57
+ vitdet_window_size: Optional[int] = None,
58
+ **kwargs,
59
+ ):
60
+ self.args = args
61
+ for field in ["dtype", "amp_dtype"]:
62
+ if self.args is not None and field in self.args:
63
+ # Convert to a string in order to make it serializable.
64
+ # For example for torch.float32 we will store "float32",
65
+ # for "bfloat16" we will store "bfloat16".
66
+ self.args[field] = str(args[field]).split(".")[-1]
67
+ self.version = version
68
+ resource = RESOURCE_MAP[version]
69
+ self.patch_size = patch_size or resource.patch_size
70
+ self.max_resolution = max_resolution or resource.max_resolution
71
+ self.preferred_resolution = (
72
+ preferred_resolution or resource.preferred_resolution
73
+ )
74
+ self.adaptor_names = adaptor_names
75
+ self.adaptor_configs = adaptor_configs
76
+ self.vitdet_window_size = vitdet_window_size
77
+ super().__init__(**kwargs)
78
+
79
+
80
+ class RADIOModel(PreTrainedModel):
81
+ """Pretrained Hugging Face model for RADIO.
82
+
83
+ This class inherits from PreTrainedModel, which provides
84
+ HuggingFace's functionality for loading and saving models.
85
+ """
86
+
87
+ config_class = RADIOConfig
88
+
89
+ def __init__(self, config: RADIOConfig):
90
+ super().__init__(config)
91
+
92
+ RADIOArgs = namedtuple("RADIOArgs", config.args.keys())
93
+ args = RADIOArgs(**config.args)
94
+ self.config = config
95
+
96
+ model = create_model_from_args(args)
97
+ input_conditioner: InputConditioner = get_default_conditioner()
98
+
99
+ dtype = getattr(args, "dtype", torch.float32)
100
+ if isinstance(dtype, str):
101
+ # Convert the dtype's string representation back to a dtype.
102
+ dtype = getattr(torch, dtype)
103
+ model.to(dtype=dtype)
104
+ input_conditioner.dtype = dtype
105
+
106
+ summary_idxs = torch.tensor(
107
+ [i for i, t in enumerate(args.teachers) if t.get("use_summary", True)],
108
+ dtype=torch.int64,
109
+ )
110
+
111
+ adaptor_configs = config.adaptor_configs
112
+ adaptor_names = config.adaptor_names or []
113
+
114
+ adaptors = dict()
115
+ for adaptor_name in adaptor_names:
116
+ mlp_config = adaptor_configs[adaptor_name]
117
+ adaptor = GenericAdaptor(args, None, None, mlp_config)
118
+ adaptor.head_idx = mlp_config["head_idx"]
119
+ adaptors[adaptor_name] = adaptor
120
+
121
+ self.radio_model = RADIOModelBase(
122
+ model,
123
+ input_conditioner,
124
+ summary_idxs=summary_idxs,
125
+ patch_size=config.patch_size,
126
+ max_resolution=config.max_resolution,
127
+ window_size=config.vitdet_window_size,
128
+ preferred_resolution=config.preferred_resolution,
129
+ adaptors=adaptors,
130
+ )
131
+
132
+ @property
133
+ def adaptors(self) -> nn.ModuleDict:
134
+ return self.radio_model.adaptors
135
+
136
+ @property
137
+ def model(self) -> VisionTransformer:
138
+ return self.radio_model.model
139
+
140
+ @property
141
+ def input_conditioner(self) -> InputConditioner:
142
+ return self.radio_model.input_conditioner
143
+
144
+ @property
145
+ def num_summary_tokens(self) -> int:
146
+ return self.radio_model.num_summary_tokens
147
+
148
+ @property
149
+ def patch_size(self) -> int:
150
+ return self.radio_model.patch_size
151
+
152
+ @property
153
+ def max_resolution(self) -> int:
154
+ return self.radio_model.max_resolution
155
+
156
+ @property
157
+ def preferred_resolution(self) -> Resolution:
158
+ return self.radio_model.preferred_resolution
159
+
160
+ @property
161
+ def window_size(self) -> int:
162
+ return self.radio_model.window_size
163
+
164
+ @property
165
+ def min_resolution_step(self) -> int:
166
+ return self.radio_model.min_resolution_step
167
+
168
+ def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
169
+ return self.radio_model.make_preprocessor_external()
170
+
171
+ def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
172
+ return self.radio_model.get_nearest_supported_resolution(height, width)
173
+
174
+ def switch_to_deploy(self):
175
+ return self.radio_model.switch_to_deploy()
176
+
177
+ def forward(self, x: torch.Tensor):
178
+ return self.radio_model.forward(x)
input_conditioner.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ from typing import Union, Tuple
10
+
11
+ import torch
12
+ from torch import nn
13
+
14
+
15
+ norm_t = Union[Tuple[float, float, float], torch.Tensor]
16
+
17
+ class InputConditioner(nn.Module):
18
+ def __init__(self,
19
+ input_scale: float,
20
+ norm_mean: norm_t,
21
+ norm_std: norm_t,
22
+ dtype: torch.dtype = None,
23
+ ):
24
+ super().__init__()
25
+
26
+ self.dtype = dtype
27
+
28
+ self.register_buffer("norm_mean", _to_tensor(norm_mean) / input_scale)
29
+ self.register_buffer("norm_std", _to_tensor(norm_std) / input_scale)
30
+
31
+ def forward(self, x: torch.Tensor):
32
+ y = (x - self.norm_mean) / self.norm_std
33
+ if self.dtype is not None:
34
+ y = y.to(self.dtype)
35
+ return y
36
+
37
+
38
+ def get_default_conditioner():
39
+ from timm.data.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
40
+
41
+ return InputConditioner(
42
+ input_scale=1.0,
43
+ norm_mean=OPENAI_CLIP_MEAN,
44
+ norm_std=OPENAI_CLIP_STD,
45
+ )
46
+
47
+
48
+ def _to_tensor(v: norm_t):
49
+ return torch.as_tensor(v, dtype=torch.float32).view(-1, 1, 1)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2aedceebd3f8bd04a55bb23977dccf9d539724d715461f74db10c2a9b800e1a1
3
+ size 1279776576
open_clip_adaptor.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from argparse import Namespace
9
+
10
+ import torch
11
+ from torch import nn
12
+ import torch.nn.functional as F
13
+
14
+ from .adaptor_registry import adaptor_registry, dict_t, state_t
15
+
16
+ from .adaptor_generic import GenericAdaptor
17
+
18
+
19
+ class OpenCLIP_RADIO(GenericAdaptor):
20
+ def __init__(self, main_config: Namespace, adaptor_config: dict_t, state: state_t):
21
+ super().__init__(main_config, adaptor_config, state)
22
+
23
+ import open_clip
24
+
25
+ self.oc_model = open_clip.create_model_from_pretrained(
26
+ model_name=adaptor_config['model'],
27
+ pretrained=adaptor_config['pretrained'],
28
+ return_transform=False,
29
+ )
30
+ # Unload these parameters
31
+ self.oc_model.visual = None
32
+
33
+ self.tokenizer = open_clip.get_tokenizer(model_name=adaptor_config['model'])
34
+
35
+ def encode_text(self, text, normalize: bool = False):
36
+ return self.oc_model.encode_text(text, normalize=normalize)
37
+
38
+
39
+ @adaptor_registry.register_adaptor("open_clip")
40
+ def create_open_clip_adaptor(main_config: Namespace, adaptor_config: dict_t, state: state_t):
41
+ return OpenCLIP_RADIO(main_config, adaptor_config, state)
radio_model.py ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+ from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Tuple, Union
9
+
10
+ import torch
11
+ from torch import nn
12
+
13
+ from timm.models import create_model, VisionTransformer
14
+
15
+ from .enable_cpe_support import enable_cpe
16
+ from .input_conditioner import InputConditioner
17
+ from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
18
+ from . import eradio_model
19
+ from .enable_spectral_reparam import configure_spectral_reparam_from_args
20
+ from .feature_normalizer import FeatureNormalizer, IntermediateFeatureNormalizer
21
+ from . import dual_hybrid_vit
22
+
23
+
24
+ class Resolution(NamedTuple):
25
+ height: int
26
+ width: int
27
+
28
+
29
+ class RADIOModel(nn.Module):
30
+ def __init__(
31
+ self,
32
+ model: nn.Module,
33
+ input_conditioner: InputConditioner,
34
+ patch_size: int,
35
+ max_resolution: int,
36
+ preferred_resolution: Resolution,
37
+ summary_idxs: Optional[torch.Tensor] = None,
38
+ window_size: int = None,
39
+ adaptors: Dict[str, AdaptorBase] = None,
40
+ feature_normalizer: Optional[FeatureNormalizer] = None,
41
+ inter_feature_normalizer: Optional[IntermediateFeatureNormalizer] = None,
42
+ ):
43
+ super().__init__()
44
+
45
+ self.model = model
46
+ self.input_conditioner = input_conditioner
47
+ if summary_idxs is not None:
48
+ self.register_buffer('summary_idxs', summary_idxs)
49
+ else:
50
+ self.summary_idxs = None
51
+
52
+ self._preferred_resolution = preferred_resolution
53
+ self._patch_size = patch_size
54
+ self._max_resolution = max_resolution
55
+ self._window_size = window_size
56
+
57
+ adaptors = adaptors or dict()
58
+ self.adaptors = nn.ModuleDict(adaptors)
59
+
60
+ if feature_normalizer is None:
61
+ feature_normalizer = nn.Identity()
62
+ self.feature_normalizer = feature_normalizer
63
+ self.inter_feature_normalizer = inter_feature_normalizer
64
+
65
+ @property
66
+ def num_summary_tokens(self) -> int:
67
+ if hasattr(self.model, 'num_summary_tokens'):
68
+ return self.model.num_summary_tokens
69
+
70
+ patch_gen = getattr(self.model, "patch_generator", None)
71
+ if patch_gen is not None:
72
+ return patch_gen.num_skip
73
+ elif getattr(self.model, 'global_pool', None) == 'avg':
74
+ return 0
75
+ return 1
76
+
77
+ @property
78
+ def num_cls_tokens(self) -> int:
79
+ if hasattr(self.model, 'num_cls_tokens'):
80
+ return self.model.num_cls_tokens
81
+
82
+ patch_gen = getattr(self.model, 'patch_generator', None)
83
+ if patch_gen is not None:
84
+ return patch_gen.num_cls_tokens
85
+ elif getattr(self.model, 'global_pool', None) == 'avg':
86
+ return 0
87
+ return 1
88
+
89
+ @property
90
+ def patch_size(self) -> int:
91
+ if self._patch_size is not None:
92
+ return self._patch_size
93
+ if hasattr(self.model, "patch_size"):
94
+ return self.model.patch_size
95
+ patch_gen = getattr(self.model, "patch_generator", None)
96
+ if patch_gen is not None:
97
+ return patch_gen.patch_size
98
+ return None
99
+
100
+ @property
101
+ def max_resolution(self) -> int:
102
+ return self._max_resolution
103
+
104
+ @property
105
+ def preferred_resolution(self) -> Resolution:
106
+ return self._preferred_resolution
107
+
108
+ @property
109
+ def window_size(self) -> int:
110
+ return self._window_size
111
+
112
+ @property
113
+ def min_resolution_step(self) -> int:
114
+ res = self.patch_size
115
+ if self.window_size is not None:
116
+ res *= self.window_size
117
+ return res
118
+
119
+ @property
120
+ def blocks(self) -> Iterable[nn.Module]:
121
+ blocks = getattr(self.model, 'blocks', None)
122
+ if blocks is not None:
123
+ return blocks
124
+ return None
125
+
126
+ @property
127
+ def embed_dim(self) -> int:
128
+ return self.model.embed_dim
129
+
130
+ def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
131
+ ret = self.input_conditioner
132
+ self.input_conditioner = nn.Identity()
133
+ return ret
134
+
135
+ def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
136
+ height = int(round(height / self.min_resolution_step) * self.min_resolution_step)
137
+ width = int(round(width / self.min_resolution_step) * self.min_resolution_step)
138
+
139
+ height = max(height, self.min_resolution_step)
140
+ width = max(width, self.min_resolution_step)
141
+
142
+ return Resolution(height=height, width=width)
143
+
144
+ def switch_to_deploy(self):
145
+ fn = getattr(self.model, 'switch_to_deploy', None)
146
+ if fn is not None:
147
+ fn()
148
+
149
+ def forward(self, x: torch.Tensor, feature_fmt: str = 'NLC') -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
150
+ '''
151
+ Forward process for model.
152
+ Args:
153
+ x: Input tensor. Unless `make_preprocessor_external` has been called, then the dynamic range of `x` is expected to be `[0, 1]`,
154
+ otherwise `x` is expected to be mean centered with unit standard deviation.
155
+ feature_format: ['NLC', 'NCHW'] - The output format for the features.
156
+ '''
157
+ res_step = self.min_resolution_step
158
+ if res_step is not None and (x.shape[-2] % res_step != 0 or x.shape[-1] % res_step != 0):
159
+ raise ValueError('The input resolution must be a multiple of `self.min_resolution_step`. '
160
+ '`self.get_nearest_supported_resolution(<height>, <width>) is provided as a convenience API. '
161
+ f'Input: {x.shape[-2:]}, Nearest: {self.get_nearest_supported_resolution(*x.shape[-2:])}')
162
+
163
+ x = self.input_conditioner(x)
164
+ y = self.model.forward_features(x)
165
+ ret = self._extract_final(x, y, feature_fmt=feature_fmt)
166
+ return ret
167
+
168
+ def _extract_final(self, x: torch.Tensor, y: torch.Tensor, feature_fmt: str = 'NLC'):
169
+ if isinstance(self.model, VisionTransformer):
170
+ patch_gen = getattr(self.model, "patch_generator", None)
171
+ if patch_gen is not None:
172
+ all_summary = y[:, : patch_gen.num_cls_tokens]
173
+ if self.summary_idxs is not None:
174
+ bb_summary = all_summary[:, self.summary_idxs]
175
+ else:
176
+ bb_summary = all_summary
177
+ all_feat = y[:, patch_gen.num_skip :]
178
+ elif self.model.global_pool == "avg":
179
+ all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
180
+ bb_summary = all_summary
181
+ all_feat = y
182
+ else:
183
+ all_summary = y[:, 0]
184
+ bb_summary = all_summary
185
+ all_feat = y[:, 1:]
186
+ elif isinstance(self.model, eradio_model.ERADIO):
187
+ _, f = y
188
+ all_feat = f.flatten(2).transpose(1, 2)
189
+ all_summary = all_feat.mean(dim=1)
190
+ bb_summary = all_summary
191
+ elif isinstance(y, (list, tuple)):
192
+ all_summary, all_feat = y
193
+ bb_summary = all_summary
194
+ else:
195
+ all_summary = y[:, :self.num_cls_tokens]
196
+ if self.summary_idxs is not None and all_summary.shape[1] > 1:
197
+ if all_summary.shape[1] == 1:
198
+ # Create dummy duplicates
199
+ all_summary = all_summary.expand(-1, 128, -1)
200
+ bb_summary = all_summary[:, self.summary_idxs]
201
+ else:
202
+ bb_summary = all_summary
203
+ all_feat = y[:, self.num_summary_tokens:]
204
+
205
+ all_feat = self.feature_normalizer(all_feat)
206
+
207
+ if feature_fmt == 'NCHW':
208
+ fmt_feat = (all_feat.reshape(all_feat.shape[0], x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size, all_feat.shape[2])
209
+ .permute(0, 3, 1, 2)
210
+ )
211
+ elif feature_fmt == 'NLC':
212
+ fmt_feat = all_feat
213
+ else:
214
+ raise ValueError(f'Unsupported feature_fmt: {feature_fmt}. Must be one of ["NLC", "NCHW"]')
215
+
216
+ ret = RadioOutput(bb_summary.flatten(1), fmt_feat)
217
+
218
+ if self.adaptors:
219
+ ret = dict(backbone=ret)
220
+ for name, adaptor in self.adaptors.items():
221
+ if all_summary.ndim == 3:
222
+ if all_summary.shape[1] == 1:
223
+ summary = all_summary[:, 0]
224
+ else:
225
+ summary = all_summary[:, adaptor.head_idx]
226
+ else:
227
+ summary = all_summary
228
+ ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat, feature_fmt=feature_fmt, patch_size=self.patch_size)
229
+ v = adaptor(ada_input).to(torch.float32)
230
+ ret[name] = v
231
+
232
+ return ret
233
+
234
+ def forward_intermediates(
235
+ self,
236
+ x: torch.Tensor,
237
+ indices: Optional[Union[int, List[int], Tuple[int]]] = None,
238
+ return_prefix_tokens: bool = False,
239
+ norm: bool = False,
240
+ stop_early: bool = False,
241
+ output_fmt: str = 'NCHW',
242
+ intermediates_only: bool = False,
243
+ aggregation: Optional[str] = "sparse",
244
+ norm_alpha_scheme: Optional[str] = "post-alpha",
245
+ ) -> List[RadioOutput]:
246
+ """ Forward features that returns intermediates.
247
+ Args:
248
+ x: Input image tensor
249
+ indices: Take last n blocks if int, select matching indices if sequence
250
+ return_prefix_tokens: Return both prefix and spatial intermediate tokens
251
+ norm: Apply norm layer to all intermediates
252
+ stop_early: Stop iterating over blocks when last desired intermediate hit
253
+ output_fmt: Shape of intermediate feature outputs. Options: NCHW, NLC
254
+ intermediates_only: Only return intermediate features
255
+ aggregation: intermediate layer aggregation method (sparse or dense).
256
+ Dense accumulation is done by averaging the features in each group.
257
+ norm_alpha_scheme: apply alpha before ("pre-alpha") or after accumulation ("post-alpha"), or don't normalize ("none")
258
+ Only affects dense aggregation
259
+ Returns:
260
+ List of RadioOutput objects.
261
+ """
262
+ x = self.input_conditioner(x)
263
+ intermediates = self.model.forward_intermediates(
264
+ x,
265
+ indices=indices,
266
+ return_prefix_tokens=return_prefix_tokens,
267
+ norm=norm,
268
+ stop_early=stop_early,
269
+ output_fmt=output_fmt,
270
+ intermediates_only=intermediates_only,
271
+ aggregation=aggregation,
272
+ inter_feature_normalizer=self.inter_feature_normalizer,
273
+ norm_alpha_scheme=norm_alpha_scheme,
274
+ )
275
+
276
+ if not intermediates_only:
277
+ final, intermediates = intermediates
278
+
279
+ def prepare_summary(summ: Optional[torch.Tensor]):
280
+ if summ is None:
281
+ return summ
282
+ if self.summary_idxs is not None and summ.shape[1] > 1:
283
+ summ = summ[:, self.summary_idxs]
284
+ return summ.flatten(1)
285
+
286
+ if return_prefix_tokens:
287
+ radio_outputs = [
288
+ RadioOutput(prepare_summary(summary), features)
289
+ for summary, features in intermediates
290
+ ]
291
+ else:
292
+ radio_outputs = intermediates
293
+
294
+ if intermediates_only:
295
+ return radio_outputs
296
+ else:
297
+ final = self._extract_final(x, final, feature_fmt=output_fmt)
298
+ return final, radio_outputs
299
+
300
+
301
+ def create_model_from_args(args) -> nn.Module:
302
+ in_chans = 3
303
+ if args.in_chans is not None:
304
+ in_chans = args.in_chans
305
+ elif args.input_size is not None:
306
+ in_chans = args.input_size[0]
307
+
308
+ # Skip weight initialization unless it's explicitly requested.
309
+ weight_init = args.model_kwargs.pop("weight_init", "skip")
310
+
311
+ model = create_model(
312
+ args.model,
313
+ pretrained=args.pretrained,
314
+ in_chans=in_chans,
315
+ num_classes=args.num_classes,
316
+ drop_rate=args.drop,
317
+ drop_path_rate=args.drop_path,
318
+ drop_block_rate=args.drop_block,
319
+ global_pool=args.gp,
320
+ bn_momentum=args.bn_momentum,
321
+ bn_eps=args.bn_eps,
322
+ scriptable=args.torchscript,
323
+ checkpoint_path=args.initial_checkpoint,
324
+ weight_init=weight_init,
325
+ **args.model_kwargs,
326
+ )
327
+
328
+ if hasattr(model, 'norm') and not getattr(args, 'model_norm', False):
329
+ model.norm = nn.Identity()
330
+
331
+ model.head = nn.Identity()
332
+
333
+ if args.cpe_max_size is not None:
334
+ uq_teachers = set(t['name'] for t in args.teachers)
335
+ enable_cpe(
336
+ model,
337
+ args.cpe_max_size,
338
+ num_cls_tokens=len(uq_teachers) if args.cls_token_per_teacher else 1,
339
+ register_multiple=getattr(args, 'register_multiple', None),
340
+ num_registers=getattr(args, 'cpe_num_registers', None),
341
+ )
342
+
343
+ return model
vit_patch_generator.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
4
+ # and proprietary rights in and to this software, related documentation
5
+ # and any modifications thereto. Any use, reproduction, disclosure or
6
+ # distribution of this software and related documentation without an express
7
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
+
9
+ import math
10
+ from typing import Union, Tuple, Optional
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ from torch import nn
15
+ from einops import rearrange
16
+
17
+ from .cls_token import ClsToken
18
+
19
+ input_dim_t = Union[int, Tuple[int, int]]
20
+
21
+ try:
22
+ # raise ImportError()
23
+ from indirect_grid_sample import indirect_grid_sample
24
+ except ImportError:
25
+ indirect_grid_sample = None
26
+
27
+ class ViTPatchGenerator(nn.Module):
28
+ def __init__(self,
29
+ patch_size: int,
30
+ embed_dim: int,
31
+ input_dims: input_dim_t,
32
+ abs_pos: bool = True,
33
+ normalize_patches: bool = False,
34
+ cls_token: bool = False,
35
+ max_input_dims: Optional[input_dim_t] = None,
36
+ pos_dropout: float = 0.0,
37
+ return_pos_enc: bool = False,
38
+ num_cls_tokens: int = 1,
39
+ register_multiple: Optional[int] = None,
40
+ num_registers: Optional[int] = None,
41
+ patch_bias: bool = False,
42
+ device=None, dtype=None,
43
+ ):
44
+ super().__init__()
45
+
46
+ if isinstance(input_dims, int):
47
+ input_dims = (input_dims, input_dims)
48
+
49
+ if max_input_dims is None:
50
+ max_input_dims = input_dims
51
+ if isinstance(max_input_dims, int):
52
+ max_input_dims = (max_input_dims, max_input_dims)
53
+
54
+ max_input_dims = tuple(
55
+ int(math.ceil(d / patch_size) * patch_size)
56
+ for d in max_input_dims
57
+ )
58
+
59
+ self.cpe_mode = max_input_dims != input_dims
60
+ self.pos_dropout = pos_dropout
61
+ self.return_pos_enc = return_pos_enc
62
+
63
+ factory = dict(device=device, dtype=dtype)
64
+
65
+ self.patch_size = patch_size
66
+ self.abs_pos = abs_pos
67
+ self.embed_dim = embed_dim
68
+
69
+ self.num_rows = max_input_dims[0] // patch_size
70
+ self.num_cols = max_input_dims[1] // patch_size
71
+ self.input_dims = tuple(d // patch_size for d in input_dims)
72
+ self.num_patches = self.num_rows * self.num_cols
73
+ self.max_input_dims = max_input_dims
74
+
75
+ self.im_to_patches = Im2Patches(patch_size)
76
+ self.embedder = ViTPatchLinear(patch_size, embed_dim, bias=patch_bias, **factory)
77
+
78
+ if abs_pos:
79
+ scale = embed_dim ** -0.5
80
+ self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches, embed_dim, **factory) * scale)
81
+
82
+ self.cls_token = ClsToken(
83
+ embed_dim,
84
+ num_tokens=num_cls_tokens,
85
+ enabled=cls_token,
86
+ register_multiple=register_multiple,
87
+ num_registers=num_registers,
88
+ )
89
+
90
+ self.patch_normalizer = nn.LayerNorm(embed_dim) if normalize_patches else nn.Identity()
91
+
92
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
93
+ patches = self.embed_patches(x)
94
+ patches, pos_enc = self.apply_pos_enc(patches, input_size=x.shape[2:])
95
+ patches = self.cls_token(patches)
96
+ patches = self.patch_normalizer(patches)
97
+ if self.return_pos_enc:
98
+ return patches, pos_enc
99
+ return patches
100
+
101
+ @property
102
+ def apply_cls_token(self):
103
+ return self.cls_token.enabled
104
+
105
+ @property
106
+ def num_cls_tokens(self):
107
+ return self.cls_token.num_tokens
108
+
109
+ @property
110
+ def num_cls_patches(self):
111
+ return self.cls_token.num_patches
112
+
113
+ @property
114
+ def num_registers(self):
115
+ return self.cls_token.num_registers
116
+
117
+ @property
118
+ def num_skip(self):
119
+ return self.num_cls_tokens + self.num_registers
120
+
121
+ def no_weight_decay(self):
122
+ return [
123
+ 'pos_embed',
124
+ ]
125
+
126
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
127
+ if self.abs_pos:
128
+ self._load_embed(state_dict[f'{prefix}pos_embed'], self.pos_embed)
129
+
130
+ def _load_embed(self, src_embed: torch.Tensor, targ_embed: nn.Parameter):
131
+ if src_embed.shape != targ_embed.shape:
132
+ src_size = int(math.sqrt(src_embed.shape[1]))
133
+
134
+ assert src_size ** 2 == src_embed.shape[1], 'Unable to interpolate non-square embedding'
135
+
136
+ src_embed = rearrange(src_embed, 'b (h w) c -> b c h w', h=src_size, w=src_size)
137
+ src_embed = F.interpolate(src_embed, size=(self.num_rows, self.num_cols), mode='bicubic', align_corners=True, antialias=False)
138
+ src_embed = rearrange(src_embed, 'b c h w -> b (h w) c')
139
+ targ_embed.data.copy_(src_embed)
140
+
141
+ def _load_projection(self, src_proj_weight: torch.Tensor, targ_proj_weight: torch.Tensor):
142
+ if src_proj_weight.shape != targ_proj_weight.shape:
143
+ src_patch_size = int(math.sqrt(src_proj_weight.shape[1] // 3))
144
+
145
+ assert (src_patch_size ** 2) * 3 == src_proj_weight.shape[1], 'Unable to interpolate non-square patch size'
146
+
147
+ src_proj_weight = rearrange(src_proj_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
148
+ src_proj_weight = F.interpolate(src_proj_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
149
+ src_proj_weight = rearrange(src_proj_weight, 'b c h w -> b (c h w)')
150
+ targ_proj_weight.data.copy_(src_proj_weight)
151
+
152
+ def embed_patches(self, x: torch.Tensor) -> torch.Tensor:
153
+ patches = self.im_to_patches(x)
154
+ patches = self.embedder(patches)
155
+ return patches
156
+
157
+ def apply_pos_enc(self,
158
+ patches: torch.Tensor,
159
+ patch_idxs: Optional[torch.Tensor] = None,
160
+ input_size: Optional[Tuple[int, int]] = None,
161
+ ) -> torch.Tensor:
162
+ if not self.abs_pos:
163
+ return patches
164
+
165
+ pos_enc = self.get_pos_enc(patches.shape[0], patch_idxs, input_size)
166
+
167
+ if self.training and self.pos_dropout > 0:
168
+ keeps = torch.rand(patches.shape[0], 1, 1, dtype=pos_enc.dtype, device=pos_enc.device) > self.pos_dropout
169
+ pos_enc_drop = torch.where(keeps, pos_enc, 0)
170
+ else:
171
+ pos_enc_drop = pos_enc
172
+
173
+ return patches + pos_enc_drop, pos_enc
174
+
175
+ def get_pos_enc(self,
176
+ batch_size: int,
177
+ patch_idxs: Optional[torch.Tensor] = None,
178
+ input_size: Optional[Tuple[int, int]] = None,
179
+ ) -> torch.Tensor:
180
+ if input_size is None:
181
+ input_dims = self.input_dims
182
+ else:
183
+ input_dims = tuple(d // self.patch_size for d in input_size)
184
+
185
+ pos_embed = self._get_pos_embeddings(batch_size, input_dims)
186
+
187
+ if patch_idxs is None:
188
+ return pos_embed
189
+
190
+ exp_patch_idxs = patch_idxs.unsqueeze(-1).expand(-1, -1, pos_embed.shape[-1])
191
+
192
+ pos_embed = torch.gather(pos_embed.expand(patch_idxs.shape[0], -1, -1), dim=1, index=exp_patch_idxs)
193
+ return pos_embed
194
+
195
+
196
+ def _get_pos_embeddings(self, batch_size: int, input_dims: Tuple[int, int]):
197
+ if (self.num_rows, self.num_cols) == input_dims:
198
+ return self.pos_embed
199
+
200
+ pos_embed = self.pos_embed.reshape(1, self.num_rows, self.num_cols, -1).permute(0, 3, 1, 2)
201
+
202
+ def window_select(pos_embed):
203
+ if input_dims[0] < pos_embed.shape[-2]:
204
+ pos_embed = pos_embed[..., :input_dims[0], :]
205
+ if input_dims[1] < pos_embed.shape[-1]:
206
+ pos_embed = pos_embed[..., :, :input_dims[1]]
207
+ return pos_embed
208
+
209
+ if self.cpe_mode:
210
+ if self.training:
211
+ min_scale = math.sqrt(0.1)
212
+ scale = torch.rand(batch_size, 1, 1, device=pos_embed.device) * (1 - min_scale) + min_scale
213
+ aspect_min = math.log(3 / 4)
214
+ aspect_max = -aspect_min
215
+ aspect = torch.exp(torch.rand(batch_size, 1, 1, device=pos_embed.device) * (aspect_max - aspect_min) + aspect_min)
216
+
217
+ scale_x = scale * aspect
218
+ scale_y = scale * (1 / aspect)
219
+ scale_xy = torch.stack([scale_x, scale_y], dim=-1).clamp_(0, 1)
220
+
221
+ pos_xy = torch.rand(batch_size, 1, 1, 2, device=pos_embed.device) * (1 - scale_xy)
222
+
223
+ lin_x = torch.linspace(0, 1, steps=input_dims[1], device=pos_embed.device)[None, None].expand(batch_size, input_dims[0], -1)
224
+ lin_y = torch.linspace(0, 1, steps=input_dims[0], device=pos_embed.device)[None, :, None].expand(batch_size, -1, input_dims[1])
225
+
226
+ lin_xy = torch.stack([lin_x, lin_y], dim=-1)
227
+
228
+ grid_xy = lin_xy * scale_xy + pos_xy
229
+
230
+ # Convert to [-1, 1] range
231
+ grid_xy.mul_(2).sub_(1)
232
+
233
+ pos_embed = F.grid_sample(
234
+ pos_embed.float().expand(batch_size, -1, -1, -1),
235
+ grid=grid_xy,
236
+ mode='bilinear',
237
+ padding_mode='zeros',
238
+ align_corners=True,
239
+ ).to(pos_embed.dtype)
240
+ else:
241
+ # i_rows, i_cols = input_dims
242
+ # p_rows, p_cols = pos_embed.shape[2:]
243
+ # if i_rows <= p_rows and i_cols <= p_cols:
244
+ # left = (p_cols - i_cols) // 2
245
+ # top = (p_rows - i_rows) // 2
246
+ # pos_embed = pos_embed[..., top:top+i_rows, left:left+i_cols]
247
+ # else:
248
+ max_dim = max(input_dims)
249
+ pos_embed = F.interpolate(pos_embed.float(), size=(max_dim, max_dim), align_corners=True, mode='bilinear').to(pos_embed.dtype)
250
+
251
+ pos_embed = window_select(pos_embed)
252
+ else:
253
+ pos_embed = window_select(pos_embed)
254
+
255
+ if pos_embed.shape[-2:] != input_dims:
256
+ pos_embed = F.interpolate(pos_embed.float(), size=input_dims, align_corners=True, mode='bilinear').to(pos_embed.dtype)
257
+
258
+ pos_embed = pos_embed.flatten(2).permute(0, 2, 1)
259
+
260
+ return pos_embed
261
+
262
+
263
+ class Im2Patches(nn.Module):
264
+ def __init__(self, patch_size: int):
265
+ super().__init__()
266
+ self.patch_size = patch_size
267
+
268
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
269
+ if self.patch_size == 1:
270
+ patches = x.flatten(2)
271
+ patches = patches.permute(0, 2, 1)
272
+ return patches
273
+
274
+ py = x.shape[-2] // self.patch_size
275
+ px = x.shape[-1] // self.patch_size
276
+ patches = rearrange(x, 'b c (py yy) (px xx) -> b (py px) (c yy xx)',
277
+ py=py, yy=self.patch_size,
278
+ px=px, xx=self.patch_size,
279
+ )
280
+ return patches
281
+
282
+
283
+ class ViTPatchLinear(nn.Linear):
284
+ def __init__(self, patch_size: int, embed_dim: int, bias: bool = False, **factory):
285
+ super().__init__(
286
+ 3 * (patch_size ** 2),
287
+ embed_dim,
288
+ bias=bias,
289
+ **factory
290
+ )
291
+ self.patch_size = patch_size
292
+
293
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
294
+ if self.bias is not None:
295
+ self.bias.data.copy_(state_dict[f'{prefix}bias'])
296
+
297
+ weight_key, chk_weight = next((k, t) for k, t in state_dict.items() if 'weight' in k)
298
+
299
+ if chk_weight.shape != self.weight.shape:
300
+ src_patch_size = int(math.sqrt(chk_weight.shape[1] // 3))
301
+
302
+ assert (src_patch_size ** 2) * 3 == chk_weight.shape[1], 'Unable to interpolate non-square patch size'
303
+
304
+ chk_weight = rearrange(chk_weight, 'b (c h w) -> b c h w', c=3, h=src_patch_size, w=src_patch_size)
305
+ chk_weight = F.interpolate(chk_weight, size=(self.patch_size, self.patch_size), mode='bicubic', align_corners=True, antialias=False)
306
+ chk_weight = rearrange(chk_weight, 'b c h w -> b (c h w)')
307
+
308
+ weight_key = weight_key[len(prefix):]
309
+
310
+ my_sd = self.state_dict()
311
+ my_weight = next(t for k, t in my_sd.items() if 'weight' in k)
312
+ my_weight.copy_(chk_weight)
313
+ pass
vitdet.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+ from contextlib import contextmanager
3
+ from logging import getLogger
4
+ import math
5
+ import sys
6
+ from typing import List, Union, Iterable
7
+
8
+ import numpy as np
9
+ import torch
10
+ from torch import nn
11
+
12
+ from timm.models import VisionTransformer
13
+ from einops import rearrange
14
+
15
+ from .extra_models import DinoWrapper
16
+
17
+ DEFAULT_NUM_WINDOWED = 5
18
+ DEFAULT_NUM_GLOBAL = 4
19
+
20
+
21
+ class VitDetArgs:
22
+ def __init__(self,
23
+ window_size: int,
24
+ num_summary_tokens: int,
25
+ num_windowed: int = None,
26
+ num_global: int = None,
27
+ ):
28
+ self.window_size = window_size
29
+ self.num_summary_tokens = num_summary_tokens
30
+ self.num_windowed = num_windowed
31
+ self.num_global = num_global
32
+
33
+
34
+ def apply_vitdet_arch(model: Union[VisionTransformer, DinoWrapper], args: VitDetArgs):
35
+ if isinstance(model, VisionTransformer):
36
+ patch_embed = getattr(model, 'patch_generator', model.patch_embed)
37
+
38
+ return ViTDetHook(patch_embed, model.blocks, args)
39
+ elif isinstance(model, DinoWrapper):
40
+ inner = model.inner
41
+
42
+ patch_embed = getattr(inner, 'patch_generator', inner.patch_embed)
43
+ return ViTDetHook(patch_embed, inner.blocks, args)
44
+ else:
45
+ print(f'Warning: Unable to apply VitDet aug!', file=sys.stderr)
46
+
47
+
48
+ class ViTDetHook:
49
+ def __init__(self,
50
+ embedder: nn.Module,
51
+ blocks: nn.Sequential,
52
+ args: VitDetArgs,
53
+ ):
54
+ self.blocks = blocks
55
+ self.num_summary_tokens = args.num_summary_tokens
56
+ self.window_size = args.window_size
57
+
58
+ self._input_resolution = None
59
+ self._num_windows = None
60
+ self._cls_patch = None
61
+ self._order_cache = dict()
62
+
63
+ embedder.register_forward_pre_hook(self._enter_model)
64
+
65
+ # This will decide if we window-fy the patches
66
+ # and enable vit-det for this iteration, and if so,
67
+ # rearrange the patches for efficient mode switching
68
+ blocks.register_forward_pre_hook(self._enter_blocks)
69
+
70
+ is_global = True
71
+ if args.num_windowed is not None:
72
+ period = args.num_windowed + 1
73
+ else:
74
+ num_global = args.num_global or DEFAULT_NUM_GLOBAL
75
+ period = max(len(blocks) // num_global, 1)
76
+
77
+ for i, layer in enumerate(blocks[:-1]):
78
+ ctr = i % period
79
+ if ctr == 0:
80
+ layer.register_forward_pre_hook(self._to_windows)
81
+ is_global = False
82
+ elif ctr == period - 1:
83
+ layer.register_forward_pre_hook(self._to_global)
84
+ is_global = True
85
+
86
+ # Always ensure the final layer is a global layer
87
+ if not is_global:
88
+ blocks[-1].register_forward_pre_hook(self._to_global)
89
+
90
+ blocks.register_forward_hook(self._exit_model)
91
+
92
+ def _enter_model(self, _, input: List[torch.Tensor]):
93
+ self._input_resolution = input[0].shape[-2:]
94
+
95
+ def _enter_blocks(self, _, input: List[torch.Tensor]):
96
+ # print(f'{get_rank()} - ViTDet Window Size: {self._window_size}', file=sys.stderr)
97
+
98
+ patches = input[0]
99
+ patches = self._rearrange_patches(patches)
100
+
101
+ return (patches,) + input[1:]
102
+
103
+ def _to_windows(self, _, input: List[torch.Tensor]):
104
+ patches = input[0]
105
+
106
+ if self.num_summary_tokens:
107
+ self._cls_patch = patches[:, :self.num_summary_tokens]
108
+ patches = patches[:, self.num_summary_tokens:]
109
+
110
+ patches = rearrange(
111
+ patches, 'b (p t) c -> (b p) t c',
112
+ p=self._num_windows, t=self.window_size ** 2,
113
+ )
114
+
115
+ return (patches,) + input[1:]
116
+
117
+ def _to_global(self, _, input: List[torch.Tensor]):
118
+ patches = input[0]
119
+
120
+ patches = rearrange(
121
+ patches, '(b p) t c -> b (p t) c',
122
+ p=self._num_windows, t=self.window_size ** 2,
123
+ b=patches.shape[0] // self._num_windows,
124
+ )
125
+
126
+ if self.num_summary_tokens:
127
+ patches = torch.cat([
128
+ self._cls_patch,
129
+ patches,
130
+ ], dim=1)
131
+
132
+ return (patches,) + input[1:]
133
+
134
+ def _exit_model(self, _, inputs: List[torch.Tensor], patches: torch.Tensor):
135
+ # Return patches to their original order
136
+ patch_order = self._order_cache[self._input_resolution][0]
137
+ patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
138
+
139
+ ret_patches = torch.empty_like(patches)
140
+ ret_patches = torch.scatter(
141
+ ret_patches,
142
+ dim=1,
143
+ index=patch_order,
144
+ src=patches,
145
+ )
146
+
147
+ return ret_patches
148
+
149
+ def _rearrange_patches(self, patches: torch.Tensor):
150
+ # We rearrange the patches so that we can efficiently
151
+ # switch between windowed and global mode by just
152
+ # reshaping the tensor
153
+
154
+ patch_order, self._num_windows = self._order_cache.get(self._input_resolution, (None, None))
155
+ if patch_order is None:
156
+ num_feat_patches = patches.shape[1] - self.num_summary_tokens
157
+ num_pixels = self._input_resolution[0] * self._input_resolution[1]
158
+
159
+ patch_size = int(round(math.sqrt(num_pixels / num_feat_patches)))
160
+ rows = self._input_resolution[-2] // patch_size
161
+ cols = self._input_resolution[-1] // patch_size
162
+
163
+ w_rows = rows // self.window_size
164
+ w_cols = cols // self.window_size
165
+
166
+ patch_order = torch.arange(0, num_feat_patches, device=patches.device)
167
+
168
+ patch_order = rearrange(
169
+ patch_order, '(wy py wx px) -> (wy wx py px)',
170
+ wy=w_rows, wx=w_cols,
171
+ py=self.window_size, px=self.window_size,
172
+ )
173
+
174
+ if self.num_summary_tokens:
175
+ patch_order = torch.cat([
176
+ torch.arange(self.num_summary_tokens, dtype=patch_order.dtype, device=patch_order.device),
177
+ patch_order + self.num_summary_tokens,
178
+ ])
179
+
180
+ self._num_windows = w_rows * w_cols
181
+ self._order_cache[self._input_resolution] = (
182
+ patch_order,
183
+ self._num_windows,
184
+ )
185
+
186
+ patch_order = patch_order.reshape(1, -1, 1).expand_as(patches)
187
+ patches = torch.gather(patches, dim=1, index=patch_order)
188
+ return patches