Upload 18 files
Browse files- .gitattributes +1 -0
- block_config.py +118 -0
- config.json +1485 -0
- configuration_decilm.py +65 -0
- model.safetensors.index.json +575 -0
- modeling_decilm.py +1681 -0
- special_tokens_map.json +16 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2063 -0
- transformers_4_44_2__activations.py +239 -0
- transformers_4_44_2__cache_utils.py +1347 -0
- transformers_4_44_2__configuration_llama.py +203 -0
- transformers_4_44_2__modeling_attn_mask_utils.py +482 -0
- transformers_4_44_2__modeling_flash_attention_utils_backward_compat.py +348 -0
- transformers_4_44_2__modeling_outputs.py +0 -0
- transformers_4_44_2__modeling_rope_utils.py +559 -0
- transformers_4_44_2__pytorch_utils.py +17 -0
- variable_cache.py +139 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
block_config.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import json
|
3 |
+
import warnings
|
4 |
+
from dataclasses import dataclass, MISSING
|
5 |
+
from functools import partial
|
6 |
+
from typing import Optional, Any
|
7 |
+
|
8 |
+
|
9 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
10 |
+
class JsonComparable:
|
11 |
+
def to_json(self) -> str:
|
12 |
+
return json.dumps(dataclasses.asdict(self))
|
13 |
+
|
14 |
+
def __eq__(self, other: "JsonComparable") -> bool:
|
15 |
+
return self.to_json() == other.to_json()
|
16 |
+
|
17 |
+
def __hash__(self) -> int:
|
18 |
+
return hash(self.to_json())
|
19 |
+
|
20 |
+
def __lt__(self, other: "JsonComparable") -> bool:
|
21 |
+
return self.to_json() < other.to_json()
|
22 |
+
|
23 |
+
|
24 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
25 |
+
class SubblockConfig(JsonComparable):
|
26 |
+
no_op: bool = False
|
27 |
+
replace_with_linear: bool = False
|
28 |
+
sparsify: Optional[list[str]] = None
|
29 |
+
|
30 |
+
def __post_init__(self):
|
31 |
+
assert not (self.no_op and self.replace_with_linear)
|
32 |
+
|
33 |
+
def _force_setattr(self, name: str, value: Any) -> None:
|
34 |
+
"""
|
35 |
+
Set an attribute even in frozen dataclasses.
|
36 |
+
Use only inside __post_init__!
|
37 |
+
"""
|
38 |
+
object.__setattr__(self, name, value)
|
39 |
+
|
40 |
+
|
41 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
42 |
+
class AttentionConfig(SubblockConfig):
|
43 |
+
n_heads_in_group: Optional[int] = None
|
44 |
+
window_length: Optional[int] = None
|
45 |
+
num_sink_tokens: Optional[int] = None
|
46 |
+
use_prefill_window_in_sink_attention: bool = False
|
47 |
+
unshifted_sink: bool = False
|
48 |
+
|
49 |
+
def __post_init__(self):
|
50 |
+
super().__post_init__()
|
51 |
+
assert not (self.no_op and self.replace_with_linear)
|
52 |
+
|
53 |
+
if self.no_op or self.replace_with_linear:
|
54 |
+
for irrelevant_att in ["n_heads_in_group", "window_length", "num_sink_tokens"]:
|
55 |
+
self._force_setattr(irrelevant_att, None)
|
56 |
+
else:
|
57 |
+
assert self.n_heads_in_group is not None
|
58 |
+
|
59 |
+
if self.is_sink:
|
60 |
+
assert not (self.unshifted_sink and self.use_prefill_window_in_sink_attention), \
|
61 |
+
("Unshifted sink uses its own kind of explicit masking, not standard window. "
|
62 |
+
"Set use_prefill_window_in_sink_attention to False.")
|
63 |
+
assert not (self.num_sink_tokens == 0 and not self.unshifted_sink), \
|
64 |
+
"Fake sink attention with 0 sink tokens is only supported with unshifted_sink=True"
|
65 |
+
|
66 |
+
@property
|
67 |
+
def prefill_sliding_window(self) -> Optional[int]:
|
68 |
+
if self.window_length is not None:
|
69 |
+
if not self.is_sink or self.use_prefill_window_in_sink_attention:
|
70 |
+
return self.window_length
|
71 |
+
return None
|
72 |
+
|
73 |
+
@property
|
74 |
+
def is_sliding(self) -> bool:
|
75 |
+
return self.prefill_sliding_window is not None
|
76 |
+
|
77 |
+
@property
|
78 |
+
def is_sink(self) -> bool:
|
79 |
+
return (
|
80 |
+
(self.window_length is not None)
|
81 |
+
and
|
82 |
+
(self.num_sink_tokens is not None)
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
87 |
+
class FFNConfig(SubblockConfig):
|
88 |
+
ffn_mult: Optional[float] = None
|
89 |
+
|
90 |
+
def __post_init__(self):
|
91 |
+
super().__post_init__()
|
92 |
+
if self.no_op or self.replace_with_linear:
|
93 |
+
self._force_setattr("ffn_mult", None)
|
94 |
+
else:
|
95 |
+
assert self.ffn_mult is not None
|
96 |
+
self._force_setattr("ffn_mult", round(self.ffn_mult, 6))
|
97 |
+
|
98 |
+
|
99 |
+
@partial(dataclass, frozen=True, kw_only=True)
|
100 |
+
class BlockConfig(JsonComparable):
|
101 |
+
attention: AttentionConfig = MISSING
|
102 |
+
ffn: FFNConfig = MISSING
|
103 |
+
|
104 |
+
def __post_init__(self):
|
105 |
+
"""
|
106 |
+
Init subblock dataclasses from dicts
|
107 |
+
"""
|
108 |
+
for subblock_name in dataclasses.fields(self):
|
109 |
+
subblock_config = getattr(self, subblock_name.name)
|
110 |
+
if isinstance(subblock_config, dict):
|
111 |
+
subblock_fields = [field.name for field in dataclasses.fields(subblock_name.type)]
|
112 |
+
unsupported_fields = [field_name for field_name in subblock_config.keys()
|
113 |
+
if field_name not in subblock_fields]
|
114 |
+
if len(unsupported_fields) > 0:
|
115 |
+
warnings.warn(f"Removed unsupported fields {unsupported_fields} from {subblock_name.type.__name__}")
|
116 |
+
subblock_config = {k: v for k, v in subblock_config.items() if k not in unsupported_fields}
|
117 |
+
object.__setattr__(self, subblock_name.name,
|
118 |
+
subblock_name.type(**subblock_config)) # __setattr__ to overcome frozen=True
|
config.json
ADDED
@@ -0,0 +1,1485 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "llama_nemotron_super",
|
3 |
+
"architectures": [
|
4 |
+
"DeciLMForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_decilm.DeciLMConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_decilm.DeciLMForCausalLM"
|
11 |
+
},
|
12 |
+
"block_configs": [
|
13 |
+
{
|
14 |
+
"attention": {
|
15 |
+
"n_heads_in_group": 8,
|
16 |
+
"no_op": false,
|
17 |
+
"num_sink_tokens": null,
|
18 |
+
"replace_with_linear": false,
|
19 |
+
"sparsify": null,
|
20 |
+
"unshifted_sink": false,
|
21 |
+
"use_prefill_window_in_sink_attention": false,
|
22 |
+
"window_length": null
|
23 |
+
},
|
24 |
+
"ffn": {
|
25 |
+
"ffn_mult": 2.625,
|
26 |
+
"no_op": false,
|
27 |
+
"replace_with_linear": false,
|
28 |
+
"sparsify": null
|
29 |
+
}
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"attention": {
|
33 |
+
"n_heads_in_group": 8,
|
34 |
+
"no_op": false,
|
35 |
+
"num_sink_tokens": null,
|
36 |
+
"replace_with_linear": false,
|
37 |
+
"sparsify": null,
|
38 |
+
"unshifted_sink": false,
|
39 |
+
"use_prefill_window_in_sink_attention": false,
|
40 |
+
"window_length": null
|
41 |
+
},
|
42 |
+
"ffn": {
|
43 |
+
"ffn_mult": 5.25,
|
44 |
+
"no_op": false,
|
45 |
+
"replace_with_linear": false,
|
46 |
+
"sparsify": null
|
47 |
+
}
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"attention": {
|
51 |
+
"n_heads_in_group": 8,
|
52 |
+
"no_op": false,
|
53 |
+
"num_sink_tokens": null,
|
54 |
+
"replace_with_linear": false,
|
55 |
+
"sparsify": null,
|
56 |
+
"unshifted_sink": false,
|
57 |
+
"use_prefill_window_in_sink_attention": false,
|
58 |
+
"window_length": null
|
59 |
+
},
|
60 |
+
"ffn": {
|
61 |
+
"ffn_mult": 5.25,
|
62 |
+
"no_op": false,
|
63 |
+
"replace_with_linear": false,
|
64 |
+
"sparsify": null
|
65 |
+
}
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"attention": {
|
69 |
+
"n_heads_in_group": 8,
|
70 |
+
"no_op": false,
|
71 |
+
"num_sink_tokens": null,
|
72 |
+
"replace_with_linear": false,
|
73 |
+
"sparsify": null,
|
74 |
+
"unshifted_sink": false,
|
75 |
+
"use_prefill_window_in_sink_attention": false,
|
76 |
+
"window_length": null
|
77 |
+
},
|
78 |
+
"ffn": {
|
79 |
+
"ffn_mult": 5.25,
|
80 |
+
"no_op": false,
|
81 |
+
"replace_with_linear": false,
|
82 |
+
"sparsify": null
|
83 |
+
}
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"attention": {
|
87 |
+
"n_heads_in_group": 8,
|
88 |
+
"no_op": false,
|
89 |
+
"num_sink_tokens": null,
|
90 |
+
"replace_with_linear": false,
|
91 |
+
"sparsify": null,
|
92 |
+
"unshifted_sink": false,
|
93 |
+
"use_prefill_window_in_sink_attention": false,
|
94 |
+
"window_length": null
|
95 |
+
},
|
96 |
+
"ffn": {
|
97 |
+
"ffn_mult": 5.25,
|
98 |
+
"no_op": false,
|
99 |
+
"replace_with_linear": false,
|
100 |
+
"sparsify": null
|
101 |
+
}
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"attention": {
|
105 |
+
"n_heads_in_group": 8,
|
106 |
+
"no_op": false,
|
107 |
+
"num_sink_tokens": null,
|
108 |
+
"replace_with_linear": false,
|
109 |
+
"sparsify": null,
|
110 |
+
"unshifted_sink": false,
|
111 |
+
"use_prefill_window_in_sink_attention": false,
|
112 |
+
"window_length": null
|
113 |
+
},
|
114 |
+
"ffn": {
|
115 |
+
"ffn_mult": 5.25,
|
116 |
+
"no_op": false,
|
117 |
+
"replace_with_linear": false,
|
118 |
+
"sparsify": null
|
119 |
+
}
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"attention": {
|
123 |
+
"n_heads_in_group": null,
|
124 |
+
"no_op": true,
|
125 |
+
"num_sink_tokens": null,
|
126 |
+
"replace_with_linear": false,
|
127 |
+
"sparsify": null,
|
128 |
+
"unshifted_sink": false,
|
129 |
+
"use_prefill_window_in_sink_attention": false,
|
130 |
+
"window_length": null
|
131 |
+
},
|
132 |
+
"ffn": {
|
133 |
+
"ffn_mult": 2.625,
|
134 |
+
"no_op": false,
|
135 |
+
"replace_with_linear": false,
|
136 |
+
"sparsify": null
|
137 |
+
}
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"attention": {
|
141 |
+
"n_heads_in_group": null,
|
142 |
+
"no_op": true,
|
143 |
+
"num_sink_tokens": null,
|
144 |
+
"replace_with_linear": false,
|
145 |
+
"sparsify": null,
|
146 |
+
"unshifted_sink": false,
|
147 |
+
"use_prefill_window_in_sink_attention": false,
|
148 |
+
"window_length": null
|
149 |
+
},
|
150 |
+
"ffn": {
|
151 |
+
"ffn_mult": 2.625,
|
152 |
+
"no_op": false,
|
153 |
+
"replace_with_linear": false,
|
154 |
+
"sparsify": null
|
155 |
+
}
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"attention": {
|
159 |
+
"n_heads_in_group": 8,
|
160 |
+
"no_op": false,
|
161 |
+
"num_sink_tokens": null,
|
162 |
+
"replace_with_linear": false,
|
163 |
+
"sparsify": null,
|
164 |
+
"unshifted_sink": false,
|
165 |
+
"use_prefill_window_in_sink_attention": false,
|
166 |
+
"window_length": null
|
167 |
+
},
|
168 |
+
"ffn": {
|
169 |
+
"ffn_mult": 5.25,
|
170 |
+
"no_op": false,
|
171 |
+
"replace_with_linear": false,
|
172 |
+
"sparsify": null
|
173 |
+
}
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"attention": {
|
177 |
+
"n_heads_in_group": 8,
|
178 |
+
"no_op": false,
|
179 |
+
"num_sink_tokens": null,
|
180 |
+
"replace_with_linear": false,
|
181 |
+
"sparsify": null,
|
182 |
+
"unshifted_sink": false,
|
183 |
+
"use_prefill_window_in_sink_attention": false,
|
184 |
+
"window_length": null
|
185 |
+
},
|
186 |
+
"ffn": {
|
187 |
+
"ffn_mult": 5.25,
|
188 |
+
"no_op": false,
|
189 |
+
"replace_with_linear": false,
|
190 |
+
"sparsify": null
|
191 |
+
}
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"attention": {
|
195 |
+
"n_heads_in_group": 8,
|
196 |
+
"no_op": false,
|
197 |
+
"num_sink_tokens": null,
|
198 |
+
"replace_with_linear": false,
|
199 |
+
"sparsify": null,
|
200 |
+
"unshifted_sink": false,
|
201 |
+
"use_prefill_window_in_sink_attention": false,
|
202 |
+
"window_length": null
|
203 |
+
},
|
204 |
+
"ffn": {
|
205 |
+
"ffn_mult": 5.25,
|
206 |
+
"no_op": false,
|
207 |
+
"replace_with_linear": false,
|
208 |
+
"sparsify": null
|
209 |
+
}
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"attention": {
|
213 |
+
"n_heads_in_group": null,
|
214 |
+
"no_op": true,
|
215 |
+
"num_sink_tokens": null,
|
216 |
+
"replace_with_linear": false,
|
217 |
+
"sparsify": null,
|
218 |
+
"unshifted_sink": false,
|
219 |
+
"use_prefill_window_in_sink_attention": false,
|
220 |
+
"window_length": null
|
221 |
+
},
|
222 |
+
"ffn": {
|
223 |
+
"ffn_mult": 3.28125,
|
224 |
+
"no_op": false,
|
225 |
+
"replace_with_linear": false,
|
226 |
+
"sparsify": null
|
227 |
+
}
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"attention": {
|
231 |
+
"n_heads_in_group": 8,
|
232 |
+
"no_op": false,
|
233 |
+
"num_sink_tokens": null,
|
234 |
+
"replace_with_linear": false,
|
235 |
+
"sparsify": null,
|
236 |
+
"unshifted_sink": false,
|
237 |
+
"use_prefill_window_in_sink_attention": false,
|
238 |
+
"window_length": null
|
239 |
+
},
|
240 |
+
"ffn": {
|
241 |
+
"ffn_mult": 5.25,
|
242 |
+
"no_op": false,
|
243 |
+
"replace_with_linear": false,
|
244 |
+
"sparsify": null
|
245 |
+
}
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"attention": {
|
249 |
+
"n_heads_in_group": 8,
|
250 |
+
"no_op": false,
|
251 |
+
"num_sink_tokens": null,
|
252 |
+
"replace_with_linear": false,
|
253 |
+
"sparsify": null,
|
254 |
+
"unshifted_sink": false,
|
255 |
+
"use_prefill_window_in_sink_attention": false,
|
256 |
+
"window_length": null
|
257 |
+
},
|
258 |
+
"ffn": {
|
259 |
+
"ffn_mult": 5.25,
|
260 |
+
"no_op": false,
|
261 |
+
"replace_with_linear": false,
|
262 |
+
"sparsify": null
|
263 |
+
}
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"attention": {
|
267 |
+
"n_heads_in_group": 8,
|
268 |
+
"no_op": false,
|
269 |
+
"num_sink_tokens": null,
|
270 |
+
"replace_with_linear": false,
|
271 |
+
"sparsify": null,
|
272 |
+
"unshifted_sink": false,
|
273 |
+
"use_prefill_window_in_sink_attention": false,
|
274 |
+
"window_length": null
|
275 |
+
},
|
276 |
+
"ffn": {
|
277 |
+
"ffn_mult": 5.25,
|
278 |
+
"no_op": false,
|
279 |
+
"replace_with_linear": false,
|
280 |
+
"sparsify": null
|
281 |
+
}
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"attention": {
|
285 |
+
"n_heads_in_group": 8,
|
286 |
+
"no_op": false,
|
287 |
+
"num_sink_tokens": null,
|
288 |
+
"replace_with_linear": false,
|
289 |
+
"sparsify": null,
|
290 |
+
"unshifted_sink": false,
|
291 |
+
"use_prefill_window_in_sink_attention": false,
|
292 |
+
"window_length": null
|
293 |
+
},
|
294 |
+
"ffn": {
|
295 |
+
"ffn_mult": 5.25,
|
296 |
+
"no_op": false,
|
297 |
+
"replace_with_linear": false,
|
298 |
+
"sparsify": null
|
299 |
+
}
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"attention": {
|
303 |
+
"n_heads_in_group": 8,
|
304 |
+
"no_op": false,
|
305 |
+
"num_sink_tokens": null,
|
306 |
+
"replace_with_linear": false,
|
307 |
+
"sparsify": null,
|
308 |
+
"unshifted_sink": false,
|
309 |
+
"use_prefill_window_in_sink_attention": false,
|
310 |
+
"window_length": null
|
311 |
+
},
|
312 |
+
"ffn": {
|
313 |
+
"ffn_mult": 5.25,
|
314 |
+
"no_op": false,
|
315 |
+
"replace_with_linear": false,
|
316 |
+
"sparsify": null
|
317 |
+
}
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"attention": {
|
321 |
+
"n_heads_in_group": 8,
|
322 |
+
"no_op": false,
|
323 |
+
"num_sink_tokens": null,
|
324 |
+
"replace_with_linear": false,
|
325 |
+
"sparsify": null,
|
326 |
+
"unshifted_sink": false,
|
327 |
+
"use_prefill_window_in_sink_attention": false,
|
328 |
+
"window_length": null
|
329 |
+
},
|
330 |
+
"ffn": {
|
331 |
+
"ffn_mult": 5.25,
|
332 |
+
"no_op": false,
|
333 |
+
"replace_with_linear": false,
|
334 |
+
"sparsify": null
|
335 |
+
}
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"attention": {
|
339 |
+
"n_heads_in_group": 8,
|
340 |
+
"no_op": false,
|
341 |
+
"num_sink_tokens": null,
|
342 |
+
"replace_with_linear": false,
|
343 |
+
"sparsify": null,
|
344 |
+
"unshifted_sink": false,
|
345 |
+
"use_prefill_window_in_sink_attention": false,
|
346 |
+
"window_length": null
|
347 |
+
},
|
348 |
+
"ffn": {
|
349 |
+
"ffn_mult": 5.25,
|
350 |
+
"no_op": false,
|
351 |
+
"replace_with_linear": false,
|
352 |
+
"sparsify": null
|
353 |
+
}
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"attention": {
|
357 |
+
"n_heads_in_group": 8,
|
358 |
+
"no_op": false,
|
359 |
+
"num_sink_tokens": null,
|
360 |
+
"replace_with_linear": false,
|
361 |
+
"sparsify": null,
|
362 |
+
"unshifted_sink": false,
|
363 |
+
"use_prefill_window_in_sink_attention": false,
|
364 |
+
"window_length": null
|
365 |
+
},
|
366 |
+
"ffn": {
|
367 |
+
"ffn_mult": 5.25,
|
368 |
+
"no_op": false,
|
369 |
+
"replace_with_linear": false,
|
370 |
+
"sparsify": null
|
371 |
+
}
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"attention": {
|
375 |
+
"n_heads_in_group": 8,
|
376 |
+
"no_op": false,
|
377 |
+
"num_sink_tokens": null,
|
378 |
+
"replace_with_linear": false,
|
379 |
+
"sparsify": null,
|
380 |
+
"unshifted_sink": false,
|
381 |
+
"use_prefill_window_in_sink_attention": false,
|
382 |
+
"window_length": null
|
383 |
+
},
|
384 |
+
"ffn": {
|
385 |
+
"ffn_mult": 5.25,
|
386 |
+
"no_op": false,
|
387 |
+
"replace_with_linear": false,
|
388 |
+
"sparsify": null
|
389 |
+
}
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"attention": {
|
393 |
+
"n_heads_in_group": 8,
|
394 |
+
"no_op": false,
|
395 |
+
"num_sink_tokens": null,
|
396 |
+
"replace_with_linear": false,
|
397 |
+
"sparsify": null,
|
398 |
+
"unshifted_sink": false,
|
399 |
+
"use_prefill_window_in_sink_attention": false,
|
400 |
+
"window_length": null
|
401 |
+
},
|
402 |
+
"ffn": {
|
403 |
+
"ffn_mult": 5.25,
|
404 |
+
"no_op": false,
|
405 |
+
"replace_with_linear": false,
|
406 |
+
"sparsify": null
|
407 |
+
}
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"attention": {
|
411 |
+
"n_heads_in_group": 8,
|
412 |
+
"no_op": false,
|
413 |
+
"num_sink_tokens": null,
|
414 |
+
"replace_with_linear": false,
|
415 |
+
"sparsify": null,
|
416 |
+
"unshifted_sink": false,
|
417 |
+
"use_prefill_window_in_sink_attention": false,
|
418 |
+
"window_length": null
|
419 |
+
},
|
420 |
+
"ffn": {
|
421 |
+
"ffn_mult": 5.25,
|
422 |
+
"no_op": false,
|
423 |
+
"replace_with_linear": false,
|
424 |
+
"sparsify": null
|
425 |
+
}
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"attention": {
|
429 |
+
"n_heads_in_group": 8,
|
430 |
+
"no_op": false,
|
431 |
+
"num_sink_tokens": null,
|
432 |
+
"replace_with_linear": false,
|
433 |
+
"sparsify": null,
|
434 |
+
"unshifted_sink": false,
|
435 |
+
"use_prefill_window_in_sink_attention": false,
|
436 |
+
"window_length": null
|
437 |
+
},
|
438 |
+
"ffn": {
|
439 |
+
"ffn_mult": 5.25,
|
440 |
+
"no_op": false,
|
441 |
+
"replace_with_linear": false,
|
442 |
+
"sparsify": null
|
443 |
+
}
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"attention": {
|
447 |
+
"n_heads_in_group": 8,
|
448 |
+
"no_op": false,
|
449 |
+
"num_sink_tokens": null,
|
450 |
+
"replace_with_linear": false,
|
451 |
+
"sparsify": null,
|
452 |
+
"unshifted_sink": false,
|
453 |
+
"use_prefill_window_in_sink_attention": false,
|
454 |
+
"window_length": null
|
455 |
+
},
|
456 |
+
"ffn": {
|
457 |
+
"ffn_mult": 5.25,
|
458 |
+
"no_op": false,
|
459 |
+
"replace_with_linear": false,
|
460 |
+
"sparsify": null
|
461 |
+
}
|
462 |
+
},
|
463 |
+
{
|
464 |
+
"attention": {
|
465 |
+
"n_heads_in_group": 8,
|
466 |
+
"no_op": false,
|
467 |
+
"num_sink_tokens": null,
|
468 |
+
"replace_with_linear": false,
|
469 |
+
"sparsify": null,
|
470 |
+
"unshifted_sink": false,
|
471 |
+
"use_prefill_window_in_sink_attention": false,
|
472 |
+
"window_length": null
|
473 |
+
},
|
474 |
+
"ffn": {
|
475 |
+
"ffn_mult": 5.25,
|
476 |
+
"no_op": false,
|
477 |
+
"replace_with_linear": false,
|
478 |
+
"sparsify": null
|
479 |
+
}
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"attention": {
|
483 |
+
"n_heads_in_group": 8,
|
484 |
+
"no_op": false,
|
485 |
+
"num_sink_tokens": null,
|
486 |
+
"replace_with_linear": false,
|
487 |
+
"sparsify": null,
|
488 |
+
"unshifted_sink": false,
|
489 |
+
"use_prefill_window_in_sink_attention": false,
|
490 |
+
"window_length": null
|
491 |
+
},
|
492 |
+
"ffn": {
|
493 |
+
"ffn_mult": 5.25,
|
494 |
+
"no_op": false,
|
495 |
+
"replace_with_linear": false,
|
496 |
+
"sparsify": null
|
497 |
+
}
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"attention": {
|
501 |
+
"n_heads_in_group": 8,
|
502 |
+
"no_op": false,
|
503 |
+
"num_sink_tokens": null,
|
504 |
+
"replace_with_linear": false,
|
505 |
+
"sparsify": null,
|
506 |
+
"unshifted_sink": false,
|
507 |
+
"use_prefill_window_in_sink_attention": false,
|
508 |
+
"window_length": null
|
509 |
+
},
|
510 |
+
"ffn": {
|
511 |
+
"ffn_mult": 5.25,
|
512 |
+
"no_op": false,
|
513 |
+
"replace_with_linear": false,
|
514 |
+
"sparsify": null
|
515 |
+
}
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"attention": {
|
519 |
+
"n_heads_in_group": 8,
|
520 |
+
"no_op": false,
|
521 |
+
"num_sink_tokens": null,
|
522 |
+
"replace_with_linear": false,
|
523 |
+
"sparsify": null,
|
524 |
+
"unshifted_sink": false,
|
525 |
+
"use_prefill_window_in_sink_attention": false,
|
526 |
+
"window_length": null
|
527 |
+
},
|
528 |
+
"ffn": {
|
529 |
+
"ffn_mult": 5.25,
|
530 |
+
"no_op": false,
|
531 |
+
"replace_with_linear": false,
|
532 |
+
"sparsify": null
|
533 |
+
}
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"attention": {
|
537 |
+
"n_heads_in_group": 8,
|
538 |
+
"no_op": false,
|
539 |
+
"num_sink_tokens": null,
|
540 |
+
"replace_with_linear": false,
|
541 |
+
"sparsify": null,
|
542 |
+
"unshifted_sink": false,
|
543 |
+
"use_prefill_window_in_sink_attention": false,
|
544 |
+
"window_length": null
|
545 |
+
},
|
546 |
+
"ffn": {
|
547 |
+
"ffn_mult": 5.25,
|
548 |
+
"no_op": false,
|
549 |
+
"replace_with_linear": false,
|
550 |
+
"sparsify": null
|
551 |
+
}
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"attention": {
|
555 |
+
"n_heads_in_group": 8,
|
556 |
+
"no_op": false,
|
557 |
+
"num_sink_tokens": null,
|
558 |
+
"replace_with_linear": false,
|
559 |
+
"sparsify": null,
|
560 |
+
"unshifted_sink": false,
|
561 |
+
"use_prefill_window_in_sink_attention": false,
|
562 |
+
"window_length": null
|
563 |
+
},
|
564 |
+
"ffn": {
|
565 |
+
"ffn_mult": 5.25,
|
566 |
+
"no_op": false,
|
567 |
+
"replace_with_linear": false,
|
568 |
+
"sparsify": null
|
569 |
+
}
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"attention": {
|
573 |
+
"n_heads_in_group": 8,
|
574 |
+
"no_op": false,
|
575 |
+
"num_sink_tokens": null,
|
576 |
+
"replace_with_linear": false,
|
577 |
+
"sparsify": null,
|
578 |
+
"unshifted_sink": false,
|
579 |
+
"use_prefill_window_in_sink_attention": false,
|
580 |
+
"window_length": null
|
581 |
+
},
|
582 |
+
"ffn": {
|
583 |
+
"ffn_mult": 5.25,
|
584 |
+
"no_op": false,
|
585 |
+
"replace_with_linear": false,
|
586 |
+
"sparsify": null
|
587 |
+
}
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"attention": {
|
591 |
+
"n_heads_in_group": 8,
|
592 |
+
"no_op": false,
|
593 |
+
"num_sink_tokens": null,
|
594 |
+
"replace_with_linear": false,
|
595 |
+
"sparsify": null,
|
596 |
+
"unshifted_sink": false,
|
597 |
+
"use_prefill_window_in_sink_attention": false,
|
598 |
+
"window_length": null
|
599 |
+
},
|
600 |
+
"ffn": {
|
601 |
+
"ffn_mult": 5.25,
|
602 |
+
"no_op": false,
|
603 |
+
"replace_with_linear": false,
|
604 |
+
"sparsify": null
|
605 |
+
}
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"attention": {
|
609 |
+
"n_heads_in_group": 8,
|
610 |
+
"no_op": false,
|
611 |
+
"num_sink_tokens": null,
|
612 |
+
"replace_with_linear": false,
|
613 |
+
"sparsify": null,
|
614 |
+
"unshifted_sink": false,
|
615 |
+
"use_prefill_window_in_sink_attention": false,
|
616 |
+
"window_length": null
|
617 |
+
},
|
618 |
+
"ffn": {
|
619 |
+
"ffn_mult": 5.25,
|
620 |
+
"no_op": false,
|
621 |
+
"replace_with_linear": false,
|
622 |
+
"sparsify": null
|
623 |
+
}
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"attention": {
|
627 |
+
"n_heads_in_group": 8,
|
628 |
+
"no_op": false,
|
629 |
+
"num_sink_tokens": null,
|
630 |
+
"replace_with_linear": false,
|
631 |
+
"sparsify": null,
|
632 |
+
"unshifted_sink": false,
|
633 |
+
"use_prefill_window_in_sink_attention": false,
|
634 |
+
"window_length": null
|
635 |
+
},
|
636 |
+
"ffn": {
|
637 |
+
"ffn_mult": 5.25,
|
638 |
+
"no_op": false,
|
639 |
+
"replace_with_linear": false,
|
640 |
+
"sparsify": null
|
641 |
+
}
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"attention": {
|
645 |
+
"n_heads_in_group": 8,
|
646 |
+
"no_op": false,
|
647 |
+
"num_sink_tokens": null,
|
648 |
+
"replace_with_linear": false,
|
649 |
+
"sparsify": null,
|
650 |
+
"unshifted_sink": false,
|
651 |
+
"use_prefill_window_in_sink_attention": false,
|
652 |
+
"window_length": null
|
653 |
+
},
|
654 |
+
"ffn": {
|
655 |
+
"ffn_mult": 5.25,
|
656 |
+
"no_op": false,
|
657 |
+
"replace_with_linear": false,
|
658 |
+
"sparsify": null
|
659 |
+
}
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"attention": {
|
663 |
+
"n_heads_in_group": 8,
|
664 |
+
"no_op": false,
|
665 |
+
"num_sink_tokens": null,
|
666 |
+
"replace_with_linear": false,
|
667 |
+
"sparsify": null,
|
668 |
+
"unshifted_sink": false,
|
669 |
+
"use_prefill_window_in_sink_attention": false,
|
670 |
+
"window_length": null
|
671 |
+
},
|
672 |
+
"ffn": {
|
673 |
+
"ffn_mult": 5.25,
|
674 |
+
"no_op": false,
|
675 |
+
"replace_with_linear": false,
|
676 |
+
"sparsify": null
|
677 |
+
}
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"attention": {
|
681 |
+
"n_heads_in_group": 8,
|
682 |
+
"no_op": false,
|
683 |
+
"num_sink_tokens": null,
|
684 |
+
"replace_with_linear": false,
|
685 |
+
"sparsify": null,
|
686 |
+
"unshifted_sink": false,
|
687 |
+
"use_prefill_window_in_sink_attention": false,
|
688 |
+
"window_length": null
|
689 |
+
},
|
690 |
+
"ffn": {
|
691 |
+
"ffn_mult": 5.25,
|
692 |
+
"no_op": false,
|
693 |
+
"replace_with_linear": false,
|
694 |
+
"sparsify": null
|
695 |
+
}
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"attention": {
|
699 |
+
"n_heads_in_group": 8,
|
700 |
+
"no_op": false,
|
701 |
+
"num_sink_tokens": null,
|
702 |
+
"replace_with_linear": false,
|
703 |
+
"sparsify": null,
|
704 |
+
"unshifted_sink": false,
|
705 |
+
"use_prefill_window_in_sink_attention": false,
|
706 |
+
"window_length": null
|
707 |
+
},
|
708 |
+
"ffn": {
|
709 |
+
"ffn_mult": 5.25,
|
710 |
+
"no_op": false,
|
711 |
+
"replace_with_linear": false,
|
712 |
+
"sparsify": null
|
713 |
+
}
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"attention": {
|
717 |
+
"n_heads_in_group": 8,
|
718 |
+
"no_op": false,
|
719 |
+
"num_sink_tokens": null,
|
720 |
+
"replace_with_linear": false,
|
721 |
+
"sparsify": null,
|
722 |
+
"unshifted_sink": false,
|
723 |
+
"use_prefill_window_in_sink_attention": false,
|
724 |
+
"window_length": null
|
725 |
+
},
|
726 |
+
"ffn": {
|
727 |
+
"ffn_mult": 5.25,
|
728 |
+
"no_op": false,
|
729 |
+
"replace_with_linear": false,
|
730 |
+
"sparsify": null
|
731 |
+
}
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"attention": {
|
735 |
+
"n_heads_in_group": 8,
|
736 |
+
"no_op": false,
|
737 |
+
"num_sink_tokens": null,
|
738 |
+
"replace_with_linear": false,
|
739 |
+
"sparsify": null,
|
740 |
+
"unshifted_sink": false,
|
741 |
+
"use_prefill_window_in_sink_attention": false,
|
742 |
+
"window_length": null
|
743 |
+
},
|
744 |
+
"ffn": {
|
745 |
+
"ffn_mult": 5.25,
|
746 |
+
"no_op": false,
|
747 |
+
"replace_with_linear": false,
|
748 |
+
"sparsify": null
|
749 |
+
}
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"attention": {
|
753 |
+
"n_heads_in_group": 8,
|
754 |
+
"no_op": false,
|
755 |
+
"num_sink_tokens": null,
|
756 |
+
"replace_with_linear": false,
|
757 |
+
"sparsify": null,
|
758 |
+
"unshifted_sink": false,
|
759 |
+
"use_prefill_window_in_sink_attention": false,
|
760 |
+
"window_length": null
|
761 |
+
},
|
762 |
+
"ffn": {
|
763 |
+
"ffn_mult": 5.25,
|
764 |
+
"no_op": false,
|
765 |
+
"replace_with_linear": false,
|
766 |
+
"sparsify": null
|
767 |
+
}
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"attention": {
|
771 |
+
"n_heads_in_group": null,
|
772 |
+
"no_op": true,
|
773 |
+
"num_sink_tokens": null,
|
774 |
+
"replace_with_linear": false,
|
775 |
+
"sparsify": null,
|
776 |
+
"unshifted_sink": false,
|
777 |
+
"use_prefill_window_in_sink_attention": false,
|
778 |
+
"window_length": null
|
779 |
+
},
|
780 |
+
"ffn": {
|
781 |
+
"ffn_mult": 1.3125,
|
782 |
+
"no_op": false,
|
783 |
+
"replace_with_linear": false,
|
784 |
+
"sparsify": null
|
785 |
+
}
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"attention": {
|
789 |
+
"n_heads_in_group": null,
|
790 |
+
"no_op": true,
|
791 |
+
"num_sink_tokens": null,
|
792 |
+
"replace_with_linear": false,
|
793 |
+
"sparsify": null,
|
794 |
+
"unshifted_sink": false,
|
795 |
+
"use_prefill_window_in_sink_attention": false,
|
796 |
+
"window_length": null
|
797 |
+
},
|
798 |
+
"ffn": {
|
799 |
+
"ffn_mult": 2.625,
|
800 |
+
"no_op": false,
|
801 |
+
"replace_with_linear": false,
|
802 |
+
"sparsify": null
|
803 |
+
}
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"attention": {
|
807 |
+
"n_heads_in_group": null,
|
808 |
+
"no_op": true,
|
809 |
+
"num_sink_tokens": null,
|
810 |
+
"replace_with_linear": false,
|
811 |
+
"sparsify": null,
|
812 |
+
"unshifted_sink": false,
|
813 |
+
"use_prefill_window_in_sink_attention": false,
|
814 |
+
"window_length": null
|
815 |
+
},
|
816 |
+
"ffn": {
|
817 |
+
"ffn_mult": 2.625,
|
818 |
+
"no_op": false,
|
819 |
+
"replace_with_linear": false,
|
820 |
+
"sparsify": null
|
821 |
+
}
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"attention": {
|
825 |
+
"n_heads_in_group": null,
|
826 |
+
"no_op": true,
|
827 |
+
"num_sink_tokens": null,
|
828 |
+
"replace_with_linear": false,
|
829 |
+
"sparsify": null,
|
830 |
+
"unshifted_sink": false,
|
831 |
+
"use_prefill_window_in_sink_attention": false,
|
832 |
+
"window_length": null
|
833 |
+
},
|
834 |
+
"ffn": {
|
835 |
+
"ffn_mult": 1.3125,
|
836 |
+
"no_op": false,
|
837 |
+
"replace_with_linear": false,
|
838 |
+
"sparsify": null
|
839 |
+
}
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"attention": {
|
843 |
+
"n_heads_in_group": null,
|
844 |
+
"no_op": true,
|
845 |
+
"num_sink_tokens": null,
|
846 |
+
"replace_with_linear": false,
|
847 |
+
"sparsify": null,
|
848 |
+
"unshifted_sink": false,
|
849 |
+
"use_prefill_window_in_sink_attention": false,
|
850 |
+
"window_length": null
|
851 |
+
},
|
852 |
+
"ffn": {
|
853 |
+
"ffn_mult": 5.25,
|
854 |
+
"no_op": false,
|
855 |
+
"replace_with_linear": false,
|
856 |
+
"sparsify": null
|
857 |
+
}
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"attention": {
|
861 |
+
"n_heads_in_group": null,
|
862 |
+
"no_op": true,
|
863 |
+
"num_sink_tokens": null,
|
864 |
+
"replace_with_linear": false,
|
865 |
+
"sparsify": null,
|
866 |
+
"unshifted_sink": false,
|
867 |
+
"use_prefill_window_in_sink_attention": false,
|
868 |
+
"window_length": null
|
869 |
+
},
|
870 |
+
"ffn": {
|
871 |
+
"ffn_mult": 1.3125,
|
872 |
+
"no_op": false,
|
873 |
+
"replace_with_linear": false,
|
874 |
+
"sparsify": null
|
875 |
+
}
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"attention": {
|
879 |
+
"n_heads_in_group": null,
|
880 |
+
"no_op": true,
|
881 |
+
"num_sink_tokens": null,
|
882 |
+
"replace_with_linear": false,
|
883 |
+
"sparsify": null,
|
884 |
+
"unshifted_sink": false,
|
885 |
+
"use_prefill_window_in_sink_attention": false,
|
886 |
+
"window_length": null
|
887 |
+
},
|
888 |
+
"ffn": {
|
889 |
+
"ffn_mult": 2.625,
|
890 |
+
"no_op": false,
|
891 |
+
"replace_with_linear": false,
|
892 |
+
"sparsify": null
|
893 |
+
}
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"attention": {
|
897 |
+
"n_heads_in_group": null,
|
898 |
+
"no_op": true,
|
899 |
+
"num_sink_tokens": null,
|
900 |
+
"replace_with_linear": false,
|
901 |
+
"sparsify": null,
|
902 |
+
"unshifted_sink": false,
|
903 |
+
"use_prefill_window_in_sink_attention": false,
|
904 |
+
"window_length": null
|
905 |
+
},
|
906 |
+
"ffn": {
|
907 |
+
"ffn_mult": 1.3125,
|
908 |
+
"no_op": false,
|
909 |
+
"replace_with_linear": false,
|
910 |
+
"sparsify": null
|
911 |
+
}
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"attention": {
|
915 |
+
"n_heads_in_group": null,
|
916 |
+
"no_op": true,
|
917 |
+
"num_sink_tokens": null,
|
918 |
+
"replace_with_linear": false,
|
919 |
+
"sparsify": null,
|
920 |
+
"unshifted_sink": false,
|
921 |
+
"use_prefill_window_in_sink_attention": false,
|
922 |
+
"window_length": null
|
923 |
+
},
|
924 |
+
"ffn": {
|
925 |
+
"ffn_mult": 1.3125,
|
926 |
+
"no_op": false,
|
927 |
+
"replace_with_linear": false,
|
928 |
+
"sparsify": null
|
929 |
+
}
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"attention": {
|
933 |
+
"n_heads_in_group": null,
|
934 |
+
"no_op": true,
|
935 |
+
"num_sink_tokens": null,
|
936 |
+
"replace_with_linear": false,
|
937 |
+
"sparsify": null,
|
938 |
+
"unshifted_sink": false,
|
939 |
+
"use_prefill_window_in_sink_attention": false,
|
940 |
+
"window_length": null
|
941 |
+
},
|
942 |
+
"ffn": {
|
943 |
+
"ffn_mult": 1.3125,
|
944 |
+
"no_op": false,
|
945 |
+
"replace_with_linear": false,
|
946 |
+
"sparsify": null
|
947 |
+
}
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"attention": {
|
951 |
+
"n_heads_in_group": 8,
|
952 |
+
"no_op": false,
|
953 |
+
"num_sink_tokens": null,
|
954 |
+
"replace_with_linear": false,
|
955 |
+
"sparsify": null,
|
956 |
+
"unshifted_sink": false,
|
957 |
+
"use_prefill_window_in_sink_attention": false,
|
958 |
+
"window_length": null
|
959 |
+
},
|
960 |
+
"ffn": {
|
961 |
+
"ffn_mult": 5.25,
|
962 |
+
"no_op": false,
|
963 |
+
"replace_with_linear": false,
|
964 |
+
"sparsify": null
|
965 |
+
}
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"attention": {
|
969 |
+
"n_heads_in_group": null,
|
970 |
+
"no_op": true,
|
971 |
+
"num_sink_tokens": null,
|
972 |
+
"replace_with_linear": false,
|
973 |
+
"sparsify": null,
|
974 |
+
"unshifted_sink": false,
|
975 |
+
"use_prefill_window_in_sink_attention": false,
|
976 |
+
"window_length": null
|
977 |
+
},
|
978 |
+
"ffn": {
|
979 |
+
"ffn_mult": 1.3125,
|
980 |
+
"no_op": false,
|
981 |
+
"replace_with_linear": false,
|
982 |
+
"sparsify": null
|
983 |
+
}
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"attention": {
|
987 |
+
"n_heads_in_group": null,
|
988 |
+
"no_op": true,
|
989 |
+
"num_sink_tokens": null,
|
990 |
+
"replace_with_linear": false,
|
991 |
+
"sparsify": null,
|
992 |
+
"unshifted_sink": false,
|
993 |
+
"use_prefill_window_in_sink_attention": false,
|
994 |
+
"window_length": null
|
995 |
+
},
|
996 |
+
"ffn": {
|
997 |
+
"ffn_mult": 1.0,
|
998 |
+
"no_op": false,
|
999 |
+
"replace_with_linear": false,
|
1000 |
+
"sparsify": null
|
1001 |
+
}
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"attention": {
|
1005 |
+
"n_heads_in_group": null,
|
1006 |
+
"no_op": true,
|
1007 |
+
"num_sink_tokens": null,
|
1008 |
+
"replace_with_linear": false,
|
1009 |
+
"sparsify": null,
|
1010 |
+
"unshifted_sink": false,
|
1011 |
+
"use_prefill_window_in_sink_attention": false,
|
1012 |
+
"window_length": null
|
1013 |
+
},
|
1014 |
+
"ffn": {
|
1015 |
+
"ffn_mult": 1.0,
|
1016 |
+
"no_op": false,
|
1017 |
+
"replace_with_linear": false,
|
1018 |
+
"sparsify": null
|
1019 |
+
}
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"attention": {
|
1023 |
+
"n_heads_in_group": null,
|
1024 |
+
"no_op": true,
|
1025 |
+
"num_sink_tokens": null,
|
1026 |
+
"replace_with_linear": false,
|
1027 |
+
"sparsify": null,
|
1028 |
+
"unshifted_sink": false,
|
1029 |
+
"use_prefill_window_in_sink_attention": false,
|
1030 |
+
"window_length": null
|
1031 |
+
},
|
1032 |
+
"ffn": {
|
1033 |
+
"ffn_mult": 1.3125,
|
1034 |
+
"no_op": false,
|
1035 |
+
"replace_with_linear": false,
|
1036 |
+
"sparsify": null
|
1037 |
+
}
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"attention": {
|
1041 |
+
"n_heads_in_group": null,
|
1042 |
+
"no_op": true,
|
1043 |
+
"num_sink_tokens": null,
|
1044 |
+
"replace_with_linear": false,
|
1045 |
+
"sparsify": null,
|
1046 |
+
"unshifted_sink": false,
|
1047 |
+
"use_prefill_window_in_sink_attention": false,
|
1048 |
+
"window_length": null
|
1049 |
+
},
|
1050 |
+
"ffn": {
|
1051 |
+
"ffn_mult": 1.0,
|
1052 |
+
"no_op": false,
|
1053 |
+
"replace_with_linear": false,
|
1054 |
+
"sparsify": null
|
1055 |
+
}
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"attention": {
|
1059 |
+
"n_heads_in_group": null,
|
1060 |
+
"no_op": true,
|
1061 |
+
"num_sink_tokens": null,
|
1062 |
+
"replace_with_linear": false,
|
1063 |
+
"sparsify": null,
|
1064 |
+
"unshifted_sink": false,
|
1065 |
+
"use_prefill_window_in_sink_attention": false,
|
1066 |
+
"window_length": null
|
1067 |
+
},
|
1068 |
+
"ffn": {
|
1069 |
+
"ffn_mult": 1.0,
|
1070 |
+
"no_op": false,
|
1071 |
+
"replace_with_linear": false,
|
1072 |
+
"sparsify": null
|
1073 |
+
}
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"attention": {
|
1077 |
+
"n_heads_in_group": null,
|
1078 |
+
"no_op": true,
|
1079 |
+
"num_sink_tokens": null,
|
1080 |
+
"replace_with_linear": false,
|
1081 |
+
"sparsify": null,
|
1082 |
+
"unshifted_sink": false,
|
1083 |
+
"use_prefill_window_in_sink_attention": false,
|
1084 |
+
"window_length": null
|
1085 |
+
},
|
1086 |
+
"ffn": {
|
1087 |
+
"ffn_mult": 1.0,
|
1088 |
+
"no_op": false,
|
1089 |
+
"replace_with_linear": false,
|
1090 |
+
"sparsify": null
|
1091 |
+
}
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"attention": {
|
1095 |
+
"n_heads_in_group": null,
|
1096 |
+
"no_op": true,
|
1097 |
+
"num_sink_tokens": null,
|
1098 |
+
"replace_with_linear": false,
|
1099 |
+
"sparsify": null,
|
1100 |
+
"unshifted_sink": false,
|
1101 |
+
"use_prefill_window_in_sink_attention": false,
|
1102 |
+
"window_length": null
|
1103 |
+
},
|
1104 |
+
"ffn": {
|
1105 |
+
"ffn_mult": 1.3125,
|
1106 |
+
"no_op": false,
|
1107 |
+
"replace_with_linear": false,
|
1108 |
+
"sparsify": null
|
1109 |
+
}
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"attention": {
|
1113 |
+
"n_heads_in_group": null,
|
1114 |
+
"no_op": true,
|
1115 |
+
"num_sink_tokens": null,
|
1116 |
+
"replace_with_linear": false,
|
1117 |
+
"sparsify": null,
|
1118 |
+
"unshifted_sink": false,
|
1119 |
+
"use_prefill_window_in_sink_attention": false,
|
1120 |
+
"window_length": null
|
1121 |
+
},
|
1122 |
+
"ffn": {
|
1123 |
+
"ffn_mult": 1.3125,
|
1124 |
+
"no_op": false,
|
1125 |
+
"replace_with_linear": false,
|
1126 |
+
"sparsify": null
|
1127 |
+
}
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"attention": {
|
1131 |
+
"n_heads_in_group": null,
|
1132 |
+
"no_op": true,
|
1133 |
+
"num_sink_tokens": null,
|
1134 |
+
"replace_with_linear": false,
|
1135 |
+
"sparsify": null,
|
1136 |
+
"unshifted_sink": false,
|
1137 |
+
"use_prefill_window_in_sink_attention": false,
|
1138 |
+
"window_length": null
|
1139 |
+
},
|
1140 |
+
"ffn": {
|
1141 |
+
"ffn_mult": 0.5,
|
1142 |
+
"no_op": false,
|
1143 |
+
"replace_with_linear": false,
|
1144 |
+
"sparsify": null
|
1145 |
+
}
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"attention": {
|
1149 |
+
"n_heads_in_group": null,
|
1150 |
+
"no_op": true,
|
1151 |
+
"num_sink_tokens": null,
|
1152 |
+
"replace_with_linear": false,
|
1153 |
+
"sparsify": null,
|
1154 |
+
"unshifted_sink": false,
|
1155 |
+
"use_prefill_window_in_sink_attention": false,
|
1156 |
+
"window_length": null
|
1157 |
+
},
|
1158 |
+
"ffn": {
|
1159 |
+
"ffn_mult": 0.5,
|
1160 |
+
"no_op": false,
|
1161 |
+
"replace_with_linear": false,
|
1162 |
+
"sparsify": null
|
1163 |
+
}
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"attention": {
|
1167 |
+
"n_heads_in_group": null,
|
1168 |
+
"no_op": true,
|
1169 |
+
"num_sink_tokens": null,
|
1170 |
+
"replace_with_linear": false,
|
1171 |
+
"sparsify": null,
|
1172 |
+
"unshifted_sink": false,
|
1173 |
+
"use_prefill_window_in_sink_attention": false,
|
1174 |
+
"window_length": null
|
1175 |
+
},
|
1176 |
+
"ffn": {
|
1177 |
+
"ffn_mult": 1.0,
|
1178 |
+
"no_op": false,
|
1179 |
+
"replace_with_linear": false,
|
1180 |
+
"sparsify": null
|
1181 |
+
}
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"attention": {
|
1185 |
+
"n_heads_in_group": null,
|
1186 |
+
"no_op": true,
|
1187 |
+
"num_sink_tokens": null,
|
1188 |
+
"replace_with_linear": false,
|
1189 |
+
"sparsify": null,
|
1190 |
+
"unshifted_sink": false,
|
1191 |
+
"use_prefill_window_in_sink_attention": false,
|
1192 |
+
"window_length": null
|
1193 |
+
},
|
1194 |
+
"ffn": {
|
1195 |
+
"ffn_mult": 1.0,
|
1196 |
+
"no_op": false,
|
1197 |
+
"replace_with_linear": false,
|
1198 |
+
"sparsify": null
|
1199 |
+
}
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"attention": {
|
1203 |
+
"n_heads_in_group": null,
|
1204 |
+
"no_op": true,
|
1205 |
+
"num_sink_tokens": null,
|
1206 |
+
"replace_with_linear": false,
|
1207 |
+
"sparsify": null,
|
1208 |
+
"unshifted_sink": false,
|
1209 |
+
"use_prefill_window_in_sink_attention": false,
|
1210 |
+
"window_length": null
|
1211 |
+
},
|
1212 |
+
"ffn": {
|
1213 |
+
"ffn_mult": 0.5,
|
1214 |
+
"no_op": false,
|
1215 |
+
"replace_with_linear": false,
|
1216 |
+
"sparsify": null
|
1217 |
+
}
|
1218 |
+
},
|
1219 |
+
{
|
1220 |
+
"attention": {
|
1221 |
+
"n_heads_in_group": null,
|
1222 |
+
"no_op": true,
|
1223 |
+
"num_sink_tokens": null,
|
1224 |
+
"replace_with_linear": false,
|
1225 |
+
"sparsify": null,
|
1226 |
+
"unshifted_sink": false,
|
1227 |
+
"use_prefill_window_in_sink_attention": false,
|
1228 |
+
"window_length": null
|
1229 |
+
},
|
1230 |
+
"ffn": {
|
1231 |
+
"ffn_mult": 0.5,
|
1232 |
+
"no_op": false,
|
1233 |
+
"replace_with_linear": false,
|
1234 |
+
"sparsify": null
|
1235 |
+
}
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"attention": {
|
1239 |
+
"n_heads_in_group": null,
|
1240 |
+
"no_op": true,
|
1241 |
+
"num_sink_tokens": null,
|
1242 |
+
"replace_with_linear": false,
|
1243 |
+
"sparsify": null,
|
1244 |
+
"unshifted_sink": false,
|
1245 |
+
"use_prefill_window_in_sink_attention": false,
|
1246 |
+
"window_length": null
|
1247 |
+
},
|
1248 |
+
"ffn": {
|
1249 |
+
"ffn_mult": 1.0,
|
1250 |
+
"no_op": false,
|
1251 |
+
"replace_with_linear": false,
|
1252 |
+
"sparsify": null
|
1253 |
+
}
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"attention": {
|
1257 |
+
"n_heads_in_group": null,
|
1258 |
+
"no_op": true,
|
1259 |
+
"num_sink_tokens": null,
|
1260 |
+
"replace_with_linear": false,
|
1261 |
+
"sparsify": null,
|
1262 |
+
"unshifted_sink": false,
|
1263 |
+
"use_prefill_window_in_sink_attention": false,
|
1264 |
+
"window_length": null
|
1265 |
+
},
|
1266 |
+
"ffn": {
|
1267 |
+
"ffn_mult": 0.5,
|
1268 |
+
"no_op": false,
|
1269 |
+
"replace_with_linear": false,
|
1270 |
+
"sparsify": null
|
1271 |
+
}
|
1272 |
+
},
|
1273 |
+
{
|
1274 |
+
"attention": {
|
1275 |
+
"n_heads_in_group": null,
|
1276 |
+
"no_op": true,
|
1277 |
+
"num_sink_tokens": null,
|
1278 |
+
"replace_with_linear": false,
|
1279 |
+
"sparsify": null,
|
1280 |
+
"unshifted_sink": false,
|
1281 |
+
"use_prefill_window_in_sink_attention": false,
|
1282 |
+
"window_length": null
|
1283 |
+
},
|
1284 |
+
"ffn": {
|
1285 |
+
"ffn_mult": 0.5,
|
1286 |
+
"no_op": false,
|
1287 |
+
"replace_with_linear": false,
|
1288 |
+
"sparsify": null
|
1289 |
+
}
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"attention": {
|
1293 |
+
"n_heads_in_group": 8,
|
1294 |
+
"no_op": false,
|
1295 |
+
"num_sink_tokens": null,
|
1296 |
+
"replace_with_linear": false,
|
1297 |
+
"sparsify": null,
|
1298 |
+
"unshifted_sink": false,
|
1299 |
+
"use_prefill_window_in_sink_attention": false,
|
1300 |
+
"window_length": null
|
1301 |
+
},
|
1302 |
+
"ffn": {
|
1303 |
+
"ffn_mult": 5.25,
|
1304 |
+
"no_op": false,
|
1305 |
+
"replace_with_linear": false,
|
1306 |
+
"sparsify": null
|
1307 |
+
}
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"attention": {
|
1311 |
+
"n_heads_in_group": 8,
|
1312 |
+
"no_op": false,
|
1313 |
+
"num_sink_tokens": null,
|
1314 |
+
"replace_with_linear": false,
|
1315 |
+
"sparsify": null,
|
1316 |
+
"unshifted_sink": false,
|
1317 |
+
"use_prefill_window_in_sink_attention": false,
|
1318 |
+
"window_length": null
|
1319 |
+
},
|
1320 |
+
"ffn": {
|
1321 |
+
"ffn_mult": 5.25,
|
1322 |
+
"no_op": false,
|
1323 |
+
"replace_with_linear": false,
|
1324 |
+
"sparsify": null
|
1325 |
+
}
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"attention": {
|
1329 |
+
"n_heads_in_group": 8,
|
1330 |
+
"no_op": false,
|
1331 |
+
"num_sink_tokens": null,
|
1332 |
+
"replace_with_linear": false,
|
1333 |
+
"sparsify": null,
|
1334 |
+
"unshifted_sink": false,
|
1335 |
+
"use_prefill_window_in_sink_attention": false,
|
1336 |
+
"window_length": null
|
1337 |
+
},
|
1338 |
+
"ffn": {
|
1339 |
+
"ffn_mult": 5.25,
|
1340 |
+
"no_op": false,
|
1341 |
+
"replace_with_linear": false,
|
1342 |
+
"sparsify": null
|
1343 |
+
}
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"attention": {
|
1347 |
+
"n_heads_in_group": 8,
|
1348 |
+
"no_op": false,
|
1349 |
+
"num_sink_tokens": null,
|
1350 |
+
"replace_with_linear": false,
|
1351 |
+
"sparsify": null,
|
1352 |
+
"unshifted_sink": false,
|
1353 |
+
"use_prefill_window_in_sink_attention": false,
|
1354 |
+
"window_length": null
|
1355 |
+
},
|
1356 |
+
"ffn": {
|
1357 |
+
"ffn_mult": 5.25,
|
1358 |
+
"no_op": false,
|
1359 |
+
"replace_with_linear": false,
|
1360 |
+
"sparsify": null
|
1361 |
+
}
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"attention": {
|
1365 |
+
"n_heads_in_group": 8,
|
1366 |
+
"no_op": false,
|
1367 |
+
"num_sink_tokens": null,
|
1368 |
+
"replace_with_linear": false,
|
1369 |
+
"sparsify": null,
|
1370 |
+
"unshifted_sink": false,
|
1371 |
+
"use_prefill_window_in_sink_attention": false,
|
1372 |
+
"window_length": null
|
1373 |
+
},
|
1374 |
+
"ffn": {
|
1375 |
+
"ffn_mult": 5.25,
|
1376 |
+
"no_op": false,
|
1377 |
+
"replace_with_linear": false,
|
1378 |
+
"sparsify": null
|
1379 |
+
}
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"attention": {
|
1383 |
+
"n_heads_in_group": 8,
|
1384 |
+
"no_op": false,
|
1385 |
+
"num_sink_tokens": null,
|
1386 |
+
"replace_with_linear": false,
|
1387 |
+
"sparsify": null,
|
1388 |
+
"unshifted_sink": false,
|
1389 |
+
"use_prefill_window_in_sink_attention": false,
|
1390 |
+
"window_length": null
|
1391 |
+
},
|
1392 |
+
"ffn": {
|
1393 |
+
"ffn_mult": 5.25,
|
1394 |
+
"no_op": false,
|
1395 |
+
"replace_with_linear": false,
|
1396 |
+
"sparsify": null
|
1397 |
+
}
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"attention": {
|
1401 |
+
"n_heads_in_group": 8,
|
1402 |
+
"no_op": false,
|
1403 |
+
"num_sink_tokens": null,
|
1404 |
+
"replace_with_linear": false,
|
1405 |
+
"sparsify": null,
|
1406 |
+
"unshifted_sink": false,
|
1407 |
+
"use_prefill_window_in_sink_attention": false,
|
1408 |
+
"window_length": null
|
1409 |
+
},
|
1410 |
+
"ffn": {
|
1411 |
+
"ffn_mult": 5.25,
|
1412 |
+
"no_op": false,
|
1413 |
+
"replace_with_linear": false,
|
1414 |
+
"sparsify": null
|
1415 |
+
}
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"attention": {
|
1419 |
+
"n_heads_in_group": 8,
|
1420 |
+
"no_op": false,
|
1421 |
+
"num_sink_tokens": null,
|
1422 |
+
"replace_with_linear": false,
|
1423 |
+
"sparsify": null,
|
1424 |
+
"unshifted_sink": false,
|
1425 |
+
"use_prefill_window_in_sink_attention": false,
|
1426 |
+
"window_length": null
|
1427 |
+
},
|
1428 |
+
"ffn": {
|
1429 |
+
"ffn_mult": 5.25,
|
1430 |
+
"no_op": false,
|
1431 |
+
"replace_with_linear": false,
|
1432 |
+
"sparsify": null
|
1433 |
+
}
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"attention": {
|
1437 |
+
"n_heads_in_group": 8,
|
1438 |
+
"no_op": false,
|
1439 |
+
"num_sink_tokens": null,
|
1440 |
+
"replace_with_linear": false,
|
1441 |
+
"sparsify": null,
|
1442 |
+
"unshifted_sink": false,
|
1443 |
+
"use_prefill_window_in_sink_attention": false,
|
1444 |
+
"window_length": null
|
1445 |
+
},
|
1446 |
+
"ffn": {
|
1447 |
+
"ffn_mult": 5.25,
|
1448 |
+
"no_op": false,
|
1449 |
+
"replace_with_linear": false,
|
1450 |
+
"sparsify": null
|
1451 |
+
}
|
1452 |
+
}
|
1453 |
+
],
|
1454 |
+
"bos_token_id": 128000,
|
1455 |
+
"eos_token_id": [
|
1456 |
+
128001,
|
1457 |
+
128008,
|
1458 |
+
128009
|
1459 |
+
],
|
1460 |
+
"hidden_act": "silu",
|
1461 |
+
"hidden_size": 8192,
|
1462 |
+
"initializer_range": 0.02,
|
1463 |
+
"intermediate_size": null,
|
1464 |
+
"max_position_embeddings": 131072,
|
1465 |
+
"mlp_bias": false,
|
1466 |
+
"model_type": "nemotron-nas",
|
1467 |
+
"num_attention_heads": 64,
|
1468 |
+
"num_hidden_layers": 80,
|
1469 |
+
"num_key_value_heads": null,
|
1470 |
+
"pretraining_tp": 1,
|
1471 |
+
"rms_norm_eps": 1e-05,
|
1472 |
+
"rope_scaling": {
|
1473 |
+
"factor": 8.0,
|
1474 |
+
"high_freq_factor": 4.0,
|
1475 |
+
"low_freq_factor": 1.0,
|
1476 |
+
"original_max_position_embeddings": 8192,
|
1477 |
+
"rope_type": "llama3"
|
1478 |
+
},
|
1479 |
+
"rope_theta": 500000.0,
|
1480 |
+
"tie_word_embeddings": false,
|
1481 |
+
"torch_dtype": "bfloat16",
|
1482 |
+
"transformers_version": "4.48.3",
|
1483 |
+
"use_cache": true,
|
1484 |
+
"vocab_size": 128256
|
1485 |
+
}
|
configuration_decilm.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Nvidia Corporation. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import dataclasses
|
17 |
+
import warnings
|
18 |
+
from typing import Dict, Any
|
19 |
+
|
20 |
+
from transformers.utils import is_flash_attn_2_available
|
21 |
+
|
22 |
+
from .block_config import BlockConfig
|
23 |
+
from .transformers_4_44_2__configuration_llama import LlamaConfig
|
24 |
+
from .transformers_4_44_2__modeling_rope_utils import \
|
25 |
+
rope_config_validation # fake import to make AutoConfig infer the dependency
|
26 |
+
|
27 |
+
rope_config_validation # this line is here to make sure that auto-formatting doesn't remove the import
|
28 |
+
|
29 |
+
|
30 |
+
class DeciLMConfig(LlamaConfig):
|
31 |
+
model_type = "nemotron-nas"
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
block_configs: list[dict] | list[BlockConfig] = None,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
attn_implementation = kwargs.pop("attn_implementation", None)
|
39 |
+
if attn_implementation is None and is_flash_attn_2_available():
|
40 |
+
attn_implementation = "flash_attention_2"
|
41 |
+
|
42 |
+
if block_configs is not None:
|
43 |
+
if isinstance(block_configs[0], dict):
|
44 |
+
block_configs = [BlockConfig(**conf) for conf in block_configs]
|
45 |
+
|
46 |
+
using_unshifted_sink = any([block_config.attention.unshifted_sink for block_config in block_configs])
|
47 |
+
if using_unshifted_sink and attn_implementation != "eager":
|
48 |
+
warnings.warn("Forcing attn_implementation='eager' since some attention layers use unshifted sink")
|
49 |
+
attn_implementation = "eager"
|
50 |
+
|
51 |
+
super().__init__(attn_implementation=attn_implementation, **kwargs)
|
52 |
+
|
53 |
+
self.intermediate_size = None
|
54 |
+
self.num_key_value_heads = None
|
55 |
+
|
56 |
+
if block_configs is not None:
|
57 |
+
assert len(block_configs) == self.num_hidden_layers
|
58 |
+
|
59 |
+
self.block_configs: list[BlockConfig] = block_configs
|
60 |
+
|
61 |
+
def to_dict(self) -> Dict[str, Any]:
|
62 |
+
self_dict = super().to_dict()
|
63 |
+
if self.block_configs is not None:
|
64 |
+
self_dict["block_configs"] = [dataclasses.asdict(conf) for conf in self.block_configs]
|
65 |
+
return self_dict
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 99734290432
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00021-of-00021.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00021.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00021.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00021.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00021.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00021.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00021.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00021.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00021.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00021.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00021.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00021.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00021.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00021.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00021.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00021.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00021.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00021.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00021.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00021.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00004-of-00021.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00004-of-00021.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00004-of-00021.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00004-of-00021.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00004-of-00021.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00004-of-00021.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00004-of-00021.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00004-of-00021.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00004-of-00021.safetensors",
|
35 |
+
"model.layers.11.mlp.down_proj.weight": "model-00004-of-00021.safetensors",
|
36 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00004-of-00021.safetensors",
|
37 |
+
"model.layers.11.mlp.up_proj.weight": "model-00004-of-00021.safetensors",
|
38 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00004-of-00021.safetensors",
|
39 |
+
"model.layers.12.input_layernorm.weight": "model-00004-of-00021.safetensors",
|
40 |
+
"model.layers.12.mlp.down_proj.weight": "model-00005-of-00021.safetensors",
|
41 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00004-of-00021.safetensors",
|
42 |
+
"model.layers.12.mlp.up_proj.weight": "model-00005-of-00021.safetensors",
|
43 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00004-of-00021.safetensors",
|
44 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00004-of-00021.safetensors",
|
45 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00004-of-00021.safetensors",
|
46 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00004-of-00021.safetensors",
|
47 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00004-of-00021.safetensors",
|
48 |
+
"model.layers.13.input_layernorm.weight": "model-00005-of-00021.safetensors",
|
49 |
+
"model.layers.13.mlp.down_proj.weight": "model-00005-of-00021.safetensors",
|
50 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00005-of-00021.safetensors",
|
51 |
+
"model.layers.13.mlp.up_proj.weight": "model-00005-of-00021.safetensors",
|
52 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00005-of-00021.safetensors",
|
53 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00005-of-00021.safetensors",
|
54 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00005-of-00021.safetensors",
|
55 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00005-of-00021.safetensors",
|
56 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00005-of-00021.safetensors",
|
57 |
+
"model.layers.14.input_layernorm.weight": "model-00005-of-00021.safetensors",
|
58 |
+
"model.layers.14.mlp.down_proj.weight": "model-00005-of-00021.safetensors",
|
59 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00005-of-00021.safetensors",
|
60 |
+
"model.layers.14.mlp.up_proj.weight": "model-00005-of-00021.safetensors",
|
61 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00005-of-00021.safetensors",
|
62 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00005-of-00021.safetensors",
|
63 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00005-of-00021.safetensors",
|
64 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00005-of-00021.safetensors",
|
65 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00005-of-00021.safetensors",
|
66 |
+
"model.layers.15.input_layernorm.weight": "model-00005-of-00021.safetensors",
|
67 |
+
"model.layers.15.mlp.down_proj.weight": "model-00006-of-00021.safetensors",
|
68 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00006-of-00021.safetensors",
|
69 |
+
"model.layers.15.mlp.up_proj.weight": "model-00006-of-00021.safetensors",
|
70 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00005-of-00021.safetensors",
|
71 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00005-of-00021.safetensors",
|
72 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00005-of-00021.safetensors",
|
73 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00005-of-00021.safetensors",
|
74 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00005-of-00021.safetensors",
|
75 |
+
"model.layers.16.input_layernorm.weight": "model-00006-of-00021.safetensors",
|
76 |
+
"model.layers.16.mlp.down_proj.weight": "model-00006-of-00021.safetensors",
|
77 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00006-of-00021.safetensors",
|
78 |
+
"model.layers.16.mlp.up_proj.weight": "model-00006-of-00021.safetensors",
|
79 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00006-of-00021.safetensors",
|
80 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00006-of-00021.safetensors",
|
81 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00006-of-00021.safetensors",
|
82 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00006-of-00021.safetensors",
|
83 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00006-of-00021.safetensors",
|
84 |
+
"model.layers.17.input_layernorm.weight": "model-00006-of-00021.safetensors",
|
85 |
+
"model.layers.17.mlp.down_proj.weight": "model-00006-of-00021.safetensors",
|
86 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00006-of-00021.safetensors",
|
87 |
+
"model.layers.17.mlp.up_proj.weight": "model-00006-of-00021.safetensors",
|
88 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00006-of-00021.safetensors",
|
89 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00006-of-00021.safetensors",
|
90 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00006-of-00021.safetensors",
|
91 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00006-of-00021.safetensors",
|
92 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00006-of-00021.safetensors",
|
93 |
+
"model.layers.18.input_layernorm.weight": "model-00006-of-00021.safetensors",
|
94 |
+
"model.layers.18.mlp.down_proj.weight": "model-00007-of-00021.safetensors",
|
95 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00007-of-00021.safetensors",
|
96 |
+
"model.layers.18.mlp.up_proj.weight": "model-00007-of-00021.safetensors",
|
97 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00007-of-00021.safetensors",
|
98 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00006-of-00021.safetensors",
|
99 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00007-of-00021.safetensors",
|
100 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00006-of-00021.safetensors",
|
101 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00006-of-00021.safetensors",
|
102 |
+
"model.layers.19.input_layernorm.weight": "model-00007-of-00021.safetensors",
|
103 |
+
"model.layers.19.mlp.down_proj.weight": "model-00007-of-00021.safetensors",
|
104 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00007-of-00021.safetensors",
|
105 |
+
"model.layers.19.mlp.up_proj.weight": "model-00007-of-00021.safetensors",
|
106 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00007-of-00021.safetensors",
|
107 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00007-of-00021.safetensors",
|
108 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00007-of-00021.safetensors",
|
109 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00007-of-00021.safetensors",
|
110 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00007-of-00021.safetensors",
|
111 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00021.safetensors",
|
112 |
+
"model.layers.2.mlp.down_proj.weight": "model-00002-of-00021.safetensors",
|
113 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00002-of-00021.safetensors",
|
114 |
+
"model.layers.2.mlp.up_proj.weight": "model-00002-of-00021.safetensors",
|
115 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00002-of-00021.safetensors",
|
116 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00021.safetensors",
|
117 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00002-of-00021.safetensors",
|
118 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00021.safetensors",
|
119 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00021.safetensors",
|
120 |
+
"model.layers.20.input_layernorm.weight": "model-00007-of-00021.safetensors",
|
121 |
+
"model.layers.20.mlp.down_proj.weight": "model-00007-of-00021.safetensors",
|
122 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00007-of-00021.safetensors",
|
123 |
+
"model.layers.20.mlp.up_proj.weight": "model-00007-of-00021.safetensors",
|
124 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00007-of-00021.safetensors",
|
125 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00007-of-00021.safetensors",
|
126 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00007-of-00021.safetensors",
|
127 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00007-of-00021.safetensors",
|
128 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00007-of-00021.safetensors",
|
129 |
+
"model.layers.21.input_layernorm.weight": "model-00007-of-00021.safetensors",
|
130 |
+
"model.layers.21.mlp.down_proj.weight": "model-00008-of-00021.safetensors",
|
131 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00008-of-00021.safetensors",
|
132 |
+
"model.layers.21.mlp.up_proj.weight": "model-00008-of-00021.safetensors",
|
133 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00008-of-00021.safetensors",
|
134 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00008-of-00021.safetensors",
|
135 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00008-of-00021.safetensors",
|
136 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00008-of-00021.safetensors",
|
137 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00008-of-00021.safetensors",
|
138 |
+
"model.layers.22.input_layernorm.weight": "model-00008-of-00021.safetensors",
|
139 |
+
"model.layers.22.mlp.down_proj.weight": "model-00008-of-00021.safetensors",
|
140 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00008-of-00021.safetensors",
|
141 |
+
"model.layers.22.mlp.up_proj.weight": "model-00008-of-00021.safetensors",
|
142 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00008-of-00021.safetensors",
|
143 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00008-of-00021.safetensors",
|
144 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00008-of-00021.safetensors",
|
145 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00008-of-00021.safetensors",
|
146 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00008-of-00021.safetensors",
|
147 |
+
"model.layers.23.input_layernorm.weight": "model-00008-of-00021.safetensors",
|
148 |
+
"model.layers.23.mlp.down_proj.weight": "model-00009-of-00021.safetensors",
|
149 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00008-of-00021.safetensors",
|
150 |
+
"model.layers.23.mlp.up_proj.weight": "model-00008-of-00021.safetensors",
|
151 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00008-of-00021.safetensors",
|
152 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00008-of-00021.safetensors",
|
153 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00008-of-00021.safetensors",
|
154 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00008-of-00021.safetensors",
|
155 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00008-of-00021.safetensors",
|
156 |
+
"model.layers.24.input_layernorm.weight": "model-00009-of-00021.safetensors",
|
157 |
+
"model.layers.24.mlp.down_proj.weight": "model-00009-of-00021.safetensors",
|
158 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00009-of-00021.safetensors",
|
159 |
+
"model.layers.24.mlp.up_proj.weight": "model-00009-of-00021.safetensors",
|
160 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00009-of-00021.safetensors",
|
161 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00009-of-00021.safetensors",
|
162 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00009-of-00021.safetensors",
|
163 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00009-of-00021.safetensors",
|
164 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00009-of-00021.safetensors",
|
165 |
+
"model.layers.25.input_layernorm.weight": "model-00009-of-00021.safetensors",
|
166 |
+
"model.layers.25.mlp.down_proj.weight": "model-00009-of-00021.safetensors",
|
167 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00009-of-00021.safetensors",
|
168 |
+
"model.layers.25.mlp.up_proj.weight": "model-00009-of-00021.safetensors",
|
169 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00009-of-00021.safetensors",
|
170 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00009-of-00021.safetensors",
|
171 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00009-of-00021.safetensors",
|
172 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00009-of-00021.safetensors",
|
173 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00009-of-00021.safetensors",
|
174 |
+
"model.layers.26.input_layernorm.weight": "model-00009-of-00021.safetensors",
|
175 |
+
"model.layers.26.mlp.down_proj.weight": "model-00010-of-00021.safetensors",
|
176 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00009-of-00021.safetensors",
|
177 |
+
"model.layers.26.mlp.up_proj.weight": "model-00010-of-00021.safetensors",
|
178 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00009-of-00021.safetensors",
|
179 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00009-of-00021.safetensors",
|
180 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00009-of-00021.safetensors",
|
181 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00009-of-00021.safetensors",
|
182 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00009-of-00021.safetensors",
|
183 |
+
"model.layers.27.input_layernorm.weight": "model-00010-of-00021.safetensors",
|
184 |
+
"model.layers.27.mlp.down_proj.weight": "model-00010-of-00021.safetensors",
|
185 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00010-of-00021.safetensors",
|
186 |
+
"model.layers.27.mlp.up_proj.weight": "model-00010-of-00021.safetensors",
|
187 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00010-of-00021.safetensors",
|
188 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00010-of-00021.safetensors",
|
189 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00010-of-00021.safetensors",
|
190 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00010-of-00021.safetensors",
|
191 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00010-of-00021.safetensors",
|
192 |
+
"model.layers.28.input_layernorm.weight": "model-00010-of-00021.safetensors",
|
193 |
+
"model.layers.28.mlp.down_proj.weight": "model-00010-of-00021.safetensors",
|
194 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00010-of-00021.safetensors",
|
195 |
+
"model.layers.28.mlp.up_proj.weight": "model-00010-of-00021.safetensors",
|
196 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00010-of-00021.safetensors",
|
197 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00010-of-00021.safetensors",
|
198 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00010-of-00021.safetensors",
|
199 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00010-of-00021.safetensors",
|
200 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00010-of-00021.safetensors",
|
201 |
+
"model.layers.29.input_layernorm.weight": "model-00010-of-00021.safetensors",
|
202 |
+
"model.layers.29.mlp.down_proj.weight": "model-00011-of-00021.safetensors",
|
203 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00011-of-00021.safetensors",
|
204 |
+
"model.layers.29.mlp.up_proj.weight": "model-00011-of-00021.safetensors",
|
205 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00010-of-00021.safetensors",
|
206 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00010-of-00021.safetensors",
|
207 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00010-of-00021.safetensors",
|
208 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00010-of-00021.safetensors",
|
209 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00010-of-00021.safetensors",
|
210 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00021.safetensors",
|
211 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00021.safetensors",
|
212 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00021.safetensors",
|
213 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00021.safetensors",
|
214 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00021.safetensors",
|
215 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00002-of-00021.safetensors",
|
216 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00002-of-00021.safetensors",
|
217 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00002-of-00021.safetensors",
|
218 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00002-of-00021.safetensors",
|
219 |
+
"model.layers.30.input_layernorm.weight": "model-00011-of-00021.safetensors",
|
220 |
+
"model.layers.30.mlp.down_proj.weight": "model-00011-of-00021.safetensors",
|
221 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00011-of-00021.safetensors",
|
222 |
+
"model.layers.30.mlp.up_proj.weight": "model-00011-of-00021.safetensors",
|
223 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00011-of-00021.safetensors",
|
224 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00011-of-00021.safetensors",
|
225 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00011-of-00021.safetensors",
|
226 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00011-of-00021.safetensors",
|
227 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00011-of-00021.safetensors",
|
228 |
+
"model.layers.31.input_layernorm.weight": "model-00011-of-00021.safetensors",
|
229 |
+
"model.layers.31.mlp.down_proj.weight": "model-00011-of-00021.safetensors",
|
230 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00011-of-00021.safetensors",
|
231 |
+
"model.layers.31.mlp.up_proj.weight": "model-00011-of-00021.safetensors",
|
232 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00011-of-00021.safetensors",
|
233 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00011-of-00021.safetensors",
|
234 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00011-of-00021.safetensors",
|
235 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00011-of-00021.safetensors",
|
236 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00011-of-00021.safetensors",
|
237 |
+
"model.layers.32.input_layernorm.weight": "model-00011-of-00021.safetensors",
|
238 |
+
"model.layers.32.mlp.down_proj.weight": "model-00012-of-00021.safetensors",
|
239 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00012-of-00021.safetensors",
|
240 |
+
"model.layers.32.mlp.up_proj.weight": "model-00012-of-00021.safetensors",
|
241 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00012-of-00021.safetensors",
|
242 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00011-of-00021.safetensors",
|
243 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00012-of-00021.safetensors",
|
244 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00011-of-00021.safetensors",
|
245 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00011-of-00021.safetensors",
|
246 |
+
"model.layers.33.input_layernorm.weight": "model-00012-of-00021.safetensors",
|
247 |
+
"model.layers.33.mlp.down_proj.weight": "model-00012-of-00021.safetensors",
|
248 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00012-of-00021.safetensors",
|
249 |
+
"model.layers.33.mlp.up_proj.weight": "model-00012-of-00021.safetensors",
|
250 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00012-of-00021.safetensors",
|
251 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00012-of-00021.safetensors",
|
252 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00012-of-00021.safetensors",
|
253 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00012-of-00021.safetensors",
|
254 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00012-of-00021.safetensors",
|
255 |
+
"model.layers.34.input_layernorm.weight": "model-00012-of-00021.safetensors",
|
256 |
+
"model.layers.34.mlp.down_proj.weight": "model-00012-of-00021.safetensors",
|
257 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00012-of-00021.safetensors",
|
258 |
+
"model.layers.34.mlp.up_proj.weight": "model-00012-of-00021.safetensors",
|
259 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00012-of-00021.safetensors",
|
260 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00012-of-00021.safetensors",
|
261 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00012-of-00021.safetensors",
|
262 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00012-of-00021.safetensors",
|
263 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00012-of-00021.safetensors",
|
264 |
+
"model.layers.35.input_layernorm.weight": "model-00012-of-00021.safetensors",
|
265 |
+
"model.layers.35.mlp.down_proj.weight": "model-00013-of-00021.safetensors",
|
266 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00013-of-00021.safetensors",
|
267 |
+
"model.layers.35.mlp.up_proj.weight": "model-00013-of-00021.safetensors",
|
268 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00013-of-00021.safetensors",
|
269 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00013-of-00021.safetensors",
|
270 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00013-of-00021.safetensors",
|
271 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00013-of-00021.safetensors",
|
272 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00013-of-00021.safetensors",
|
273 |
+
"model.layers.36.input_layernorm.weight": "model-00013-of-00021.safetensors",
|
274 |
+
"model.layers.36.mlp.down_proj.weight": "model-00013-of-00021.safetensors",
|
275 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00013-of-00021.safetensors",
|
276 |
+
"model.layers.36.mlp.up_proj.weight": "model-00013-of-00021.safetensors",
|
277 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00013-of-00021.safetensors",
|
278 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00013-of-00021.safetensors",
|
279 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00013-of-00021.safetensors",
|
280 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00013-of-00021.safetensors",
|
281 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00013-of-00021.safetensors",
|
282 |
+
"model.layers.37.input_layernorm.weight": "model-00013-of-00021.safetensors",
|
283 |
+
"model.layers.37.mlp.down_proj.weight": "model-00014-of-00021.safetensors",
|
284 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00013-of-00021.safetensors",
|
285 |
+
"model.layers.37.mlp.up_proj.weight": "model-00013-of-00021.safetensors",
|
286 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00013-of-00021.safetensors",
|
287 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00013-of-00021.safetensors",
|
288 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00013-of-00021.safetensors",
|
289 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00013-of-00021.safetensors",
|
290 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00013-of-00021.safetensors",
|
291 |
+
"model.layers.38.input_layernorm.weight": "model-00014-of-00021.safetensors",
|
292 |
+
"model.layers.38.mlp.down_proj.weight": "model-00014-of-00021.safetensors",
|
293 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00014-of-00021.safetensors",
|
294 |
+
"model.layers.38.mlp.up_proj.weight": "model-00014-of-00021.safetensors",
|
295 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00014-of-00021.safetensors",
|
296 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00014-of-00021.safetensors",
|
297 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00014-of-00021.safetensors",
|
298 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00014-of-00021.safetensors",
|
299 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00014-of-00021.safetensors",
|
300 |
+
"model.layers.39.input_layernorm.weight": "model-00014-of-00021.safetensors",
|
301 |
+
"model.layers.39.mlp.down_proj.weight": "model-00014-of-00021.safetensors",
|
302 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00014-of-00021.safetensors",
|
303 |
+
"model.layers.39.mlp.up_proj.weight": "model-00014-of-00021.safetensors",
|
304 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00014-of-00021.safetensors",
|
305 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00014-of-00021.safetensors",
|
306 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00014-of-00021.safetensors",
|
307 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00014-of-00021.safetensors",
|
308 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00014-of-00021.safetensors",
|
309 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00021.safetensors",
|
310 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00021.safetensors",
|
311 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00021.safetensors",
|
312 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00021.safetensors",
|
313 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00021.safetensors",
|
314 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00021.safetensors",
|
315 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00021.safetensors",
|
316 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00021.safetensors",
|
317 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00021.safetensors",
|
318 |
+
"model.layers.40.input_layernorm.weight": "model-00014-of-00021.safetensors",
|
319 |
+
"model.layers.40.mlp.down_proj.weight": "model-00015-of-00021.safetensors",
|
320 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00014-of-00021.safetensors",
|
321 |
+
"model.layers.40.mlp.up_proj.weight": "model-00015-of-00021.safetensors",
|
322 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00014-of-00021.safetensors",
|
323 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00014-of-00021.safetensors",
|
324 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00014-of-00021.safetensors",
|
325 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00014-of-00021.safetensors",
|
326 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00014-of-00021.safetensors",
|
327 |
+
"model.layers.41.input_layernorm.weight": "model-00015-of-00021.safetensors",
|
328 |
+
"model.layers.41.mlp.down_proj.weight": "model-00015-of-00021.safetensors",
|
329 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00015-of-00021.safetensors",
|
330 |
+
"model.layers.41.mlp.up_proj.weight": "model-00015-of-00021.safetensors",
|
331 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00015-of-00021.safetensors",
|
332 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00015-of-00021.safetensors",
|
333 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00015-of-00021.safetensors",
|
334 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00015-of-00021.safetensors",
|
335 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00015-of-00021.safetensors",
|
336 |
+
"model.layers.42.mlp.down_proj.weight": "model-00015-of-00021.safetensors",
|
337 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00015-of-00021.safetensors",
|
338 |
+
"model.layers.42.mlp.up_proj.weight": "model-00015-of-00021.safetensors",
|
339 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00015-of-00021.safetensors",
|
340 |
+
"model.layers.43.mlp.down_proj.weight": "model-00015-of-00021.safetensors",
|
341 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00015-of-00021.safetensors",
|
342 |
+
"model.layers.43.mlp.up_proj.weight": "model-00015-of-00021.safetensors",
|
343 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00015-of-00021.safetensors",
|
344 |
+
"model.layers.44.mlp.down_proj.weight": "model-00015-of-00021.safetensors",
|
345 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00015-of-00021.safetensors",
|
346 |
+
"model.layers.44.mlp.up_proj.weight": "model-00015-of-00021.safetensors",
|
347 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00015-of-00021.safetensors",
|
348 |
+
"model.layers.45.mlp.down_proj.weight": "model-00015-of-00021.safetensors",
|
349 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00015-of-00021.safetensors",
|
350 |
+
"model.layers.45.mlp.up_proj.weight": "model-00015-of-00021.safetensors",
|
351 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00015-of-00021.safetensors",
|
352 |
+
"model.layers.46.mlp.down_proj.weight": "model-00016-of-00021.safetensors",
|
353 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00016-of-00021.safetensors",
|
354 |
+
"model.layers.46.mlp.up_proj.weight": "model-00016-of-00021.safetensors",
|
355 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00015-of-00021.safetensors",
|
356 |
+
"model.layers.47.mlp.down_proj.weight": "model-00016-of-00021.safetensors",
|
357 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00016-of-00021.safetensors",
|
358 |
+
"model.layers.47.mlp.up_proj.weight": "model-00016-of-00021.safetensors",
|
359 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00016-of-00021.safetensors",
|
360 |
+
"model.layers.48.mlp.down_proj.weight": "model-00016-of-00021.safetensors",
|
361 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00016-of-00021.safetensors",
|
362 |
+
"model.layers.48.mlp.up_proj.weight": "model-00016-of-00021.safetensors",
|
363 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00016-of-00021.safetensors",
|
364 |
+
"model.layers.49.mlp.down_proj.weight": "model-00016-of-00021.safetensors",
|
365 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00016-of-00021.safetensors",
|
366 |
+
"model.layers.49.mlp.up_proj.weight": "model-00016-of-00021.safetensors",
|
367 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00016-of-00021.safetensors",
|
368 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00021.safetensors",
|
369 |
+
"model.layers.5.mlp.down_proj.weight": "model-00003-of-00021.safetensors",
|
370 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00003-of-00021.safetensors",
|
371 |
+
"model.layers.5.mlp.up_proj.weight": "model-00003-of-00021.safetensors",
|
372 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00003-of-00021.safetensors",
|
373 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00003-of-00021.safetensors",
|
374 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00003-of-00021.safetensors",
|
375 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00003-of-00021.safetensors",
|
376 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00003-of-00021.safetensors",
|
377 |
+
"model.layers.50.mlp.down_proj.weight": "model-00016-of-00021.safetensors",
|
378 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00016-of-00021.safetensors",
|
379 |
+
"model.layers.50.mlp.up_proj.weight": "model-00016-of-00021.safetensors",
|
380 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00016-of-00021.safetensors",
|
381 |
+
"model.layers.51.mlp.down_proj.weight": "model-00016-of-00021.safetensors",
|
382 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00016-of-00021.safetensors",
|
383 |
+
"model.layers.51.mlp.up_proj.weight": "model-00016-of-00021.safetensors",
|
384 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00016-of-00021.safetensors",
|
385 |
+
"model.layers.52.input_layernorm.weight": "model-00016-of-00021.safetensors",
|
386 |
+
"model.layers.52.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
387 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00016-of-00021.safetensors",
|
388 |
+
"model.layers.52.mlp.up_proj.weight": "model-00016-of-00021.safetensors",
|
389 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00016-of-00021.safetensors",
|
390 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00016-of-00021.safetensors",
|
391 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00016-of-00021.safetensors",
|
392 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00016-of-00021.safetensors",
|
393 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00016-of-00021.safetensors",
|
394 |
+
"model.layers.53.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
395 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
396 |
+
"model.layers.53.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
397 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
398 |
+
"model.layers.54.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
399 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
400 |
+
"model.layers.54.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
401 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
402 |
+
"model.layers.55.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
403 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
404 |
+
"model.layers.55.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
405 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
406 |
+
"model.layers.56.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
407 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
408 |
+
"model.layers.56.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
409 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
410 |
+
"model.layers.57.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
411 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
412 |
+
"model.layers.57.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
413 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
414 |
+
"model.layers.58.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
415 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
416 |
+
"model.layers.58.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
417 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
418 |
+
"model.layers.59.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
419 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
420 |
+
"model.layers.59.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
421 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
422 |
+
"model.layers.6.mlp.down_proj.weight": "model-00003-of-00021.safetensors",
|
423 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00003-of-00021.safetensors",
|
424 |
+
"model.layers.6.mlp.up_proj.weight": "model-00003-of-00021.safetensors",
|
425 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00003-of-00021.safetensors",
|
426 |
+
"model.layers.60.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
427 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
428 |
+
"model.layers.60.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
429 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
430 |
+
"model.layers.61.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
431 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
432 |
+
"model.layers.61.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
433 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
434 |
+
"model.layers.62.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
435 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
436 |
+
"model.layers.62.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
437 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
438 |
+
"model.layers.63.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
439 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
440 |
+
"model.layers.63.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
441 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
442 |
+
"model.layers.64.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
443 |
+
"model.layers.64.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
444 |
+
"model.layers.64.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
445 |
+
"model.layers.64.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
446 |
+
"model.layers.65.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
447 |
+
"model.layers.65.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
448 |
+
"model.layers.65.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
449 |
+
"model.layers.65.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
450 |
+
"model.layers.66.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
451 |
+
"model.layers.66.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
452 |
+
"model.layers.66.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
453 |
+
"model.layers.66.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
454 |
+
"model.layers.67.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
455 |
+
"model.layers.67.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
456 |
+
"model.layers.67.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
457 |
+
"model.layers.67.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
458 |
+
"model.layers.68.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
459 |
+
"model.layers.68.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
460 |
+
"model.layers.68.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
461 |
+
"model.layers.68.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
462 |
+
"model.layers.69.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
463 |
+
"model.layers.69.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
464 |
+
"model.layers.69.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
465 |
+
"model.layers.69.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
466 |
+
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00021.safetensors",
|
467 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00003-of-00021.safetensors",
|
468 |
+
"model.layers.7.mlp.up_proj.weight": "model-00003-of-00021.safetensors",
|
469 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00021.safetensors",
|
470 |
+
"model.layers.70.mlp.down_proj.weight": "model-00017-of-00021.safetensors",
|
471 |
+
"model.layers.70.mlp.gate_proj.weight": "model-00017-of-00021.safetensors",
|
472 |
+
"model.layers.70.mlp.up_proj.weight": "model-00017-of-00021.safetensors",
|
473 |
+
"model.layers.70.post_attention_layernorm.weight": "model-00017-of-00021.safetensors",
|
474 |
+
"model.layers.71.input_layernorm.weight": "model-00017-of-00021.safetensors",
|
475 |
+
"model.layers.71.mlp.down_proj.weight": "model-00018-of-00021.safetensors",
|
476 |
+
"model.layers.71.mlp.gate_proj.weight": "model-00018-of-00021.safetensors",
|
477 |
+
"model.layers.71.mlp.up_proj.weight": "model-00018-of-00021.safetensors",
|
478 |
+
"model.layers.71.post_attention_layernorm.weight": "model-00018-of-00021.safetensors",
|
479 |
+
"model.layers.71.self_attn.k_proj.weight": "model-00018-of-00021.safetensors",
|
480 |
+
"model.layers.71.self_attn.o_proj.weight": "model-00018-of-00021.safetensors",
|
481 |
+
"model.layers.71.self_attn.q_proj.weight": "model-00018-of-00021.safetensors",
|
482 |
+
"model.layers.71.self_attn.v_proj.weight": "model-00018-of-00021.safetensors",
|
483 |
+
"model.layers.72.input_layernorm.weight": "model-00018-of-00021.safetensors",
|
484 |
+
"model.layers.72.mlp.down_proj.weight": "model-00018-of-00021.safetensors",
|
485 |
+
"model.layers.72.mlp.gate_proj.weight": "model-00018-of-00021.safetensors",
|
486 |
+
"model.layers.72.mlp.up_proj.weight": "model-00018-of-00021.safetensors",
|
487 |
+
"model.layers.72.post_attention_layernorm.weight": "model-00018-of-00021.safetensors",
|
488 |
+
"model.layers.72.self_attn.k_proj.weight": "model-00018-of-00021.safetensors",
|
489 |
+
"model.layers.72.self_attn.o_proj.weight": "model-00018-of-00021.safetensors",
|
490 |
+
"model.layers.72.self_attn.q_proj.weight": "model-00018-of-00021.safetensors",
|
491 |
+
"model.layers.72.self_attn.v_proj.weight": "model-00018-of-00021.safetensors",
|
492 |
+
"model.layers.73.input_layernorm.weight": "model-00018-of-00021.safetensors",
|
493 |
+
"model.layers.73.mlp.down_proj.weight": "model-00019-of-00021.safetensors",
|
494 |
+
"model.layers.73.mlp.gate_proj.weight": "model-00018-of-00021.safetensors",
|
495 |
+
"model.layers.73.mlp.up_proj.weight": "model-00018-of-00021.safetensors",
|
496 |
+
"model.layers.73.post_attention_layernorm.weight": "model-00018-of-00021.safetensors",
|
497 |
+
"model.layers.73.self_attn.k_proj.weight": "model-00018-of-00021.safetensors",
|
498 |
+
"model.layers.73.self_attn.o_proj.weight": "model-00018-of-00021.safetensors",
|
499 |
+
"model.layers.73.self_attn.q_proj.weight": "model-00018-of-00021.safetensors",
|
500 |
+
"model.layers.73.self_attn.v_proj.weight": "model-00018-of-00021.safetensors",
|
501 |
+
"model.layers.74.input_layernorm.weight": "model-00019-of-00021.safetensors",
|
502 |
+
"model.layers.74.mlp.down_proj.weight": "model-00019-of-00021.safetensors",
|
503 |
+
"model.layers.74.mlp.gate_proj.weight": "model-00019-of-00021.safetensors",
|
504 |
+
"model.layers.74.mlp.up_proj.weight": "model-00019-of-00021.safetensors",
|
505 |
+
"model.layers.74.post_attention_layernorm.weight": "model-00019-of-00021.safetensors",
|
506 |
+
"model.layers.74.self_attn.k_proj.weight": "model-00019-of-00021.safetensors",
|
507 |
+
"model.layers.74.self_attn.o_proj.weight": "model-00019-of-00021.safetensors",
|
508 |
+
"model.layers.74.self_attn.q_proj.weight": "model-00019-of-00021.safetensors",
|
509 |
+
"model.layers.74.self_attn.v_proj.weight": "model-00019-of-00021.safetensors",
|
510 |
+
"model.layers.75.input_layernorm.weight": "model-00019-of-00021.safetensors",
|
511 |
+
"model.layers.75.mlp.down_proj.weight": "model-00019-of-00021.safetensors",
|
512 |
+
"model.layers.75.mlp.gate_proj.weight": "model-00019-of-00021.safetensors",
|
513 |
+
"model.layers.75.mlp.up_proj.weight": "model-00019-of-00021.safetensors",
|
514 |
+
"model.layers.75.post_attention_layernorm.weight": "model-00019-of-00021.safetensors",
|
515 |
+
"model.layers.75.self_attn.k_proj.weight": "model-00019-of-00021.safetensors",
|
516 |
+
"model.layers.75.self_attn.o_proj.weight": "model-00019-of-00021.safetensors",
|
517 |
+
"model.layers.75.self_attn.q_proj.weight": "model-00019-of-00021.safetensors",
|
518 |
+
"model.layers.75.self_attn.v_proj.weight": "model-00019-of-00021.safetensors",
|
519 |
+
"model.layers.76.input_layernorm.weight": "model-00019-of-00021.safetensors",
|
520 |
+
"model.layers.76.mlp.down_proj.weight": "model-00020-of-00021.safetensors",
|
521 |
+
"model.layers.76.mlp.gate_proj.weight": "model-00019-of-00021.safetensors",
|
522 |
+
"model.layers.76.mlp.up_proj.weight": "model-00020-of-00021.safetensors",
|
523 |
+
"model.layers.76.post_attention_layernorm.weight": "model-00019-of-00021.safetensors",
|
524 |
+
"model.layers.76.self_attn.k_proj.weight": "model-00019-of-00021.safetensors",
|
525 |
+
"model.layers.76.self_attn.o_proj.weight": "model-00019-of-00021.safetensors",
|
526 |
+
"model.layers.76.self_attn.q_proj.weight": "model-00019-of-00021.safetensors",
|
527 |
+
"model.layers.76.self_attn.v_proj.weight": "model-00019-of-00021.safetensors",
|
528 |
+
"model.layers.77.input_layernorm.weight": "model-00020-of-00021.safetensors",
|
529 |
+
"model.layers.77.mlp.down_proj.weight": "model-00020-of-00021.safetensors",
|
530 |
+
"model.layers.77.mlp.gate_proj.weight": "model-00020-of-00021.safetensors",
|
531 |
+
"model.layers.77.mlp.up_proj.weight": "model-00020-of-00021.safetensors",
|
532 |
+
"model.layers.77.post_attention_layernorm.weight": "model-00020-of-00021.safetensors",
|
533 |
+
"model.layers.77.self_attn.k_proj.weight": "model-00020-of-00021.safetensors",
|
534 |
+
"model.layers.77.self_attn.o_proj.weight": "model-00020-of-00021.safetensors",
|
535 |
+
"model.layers.77.self_attn.q_proj.weight": "model-00020-of-00021.safetensors",
|
536 |
+
"model.layers.77.self_attn.v_proj.weight": "model-00020-of-00021.safetensors",
|
537 |
+
"model.layers.78.input_layernorm.weight": "model-00020-of-00021.safetensors",
|
538 |
+
"model.layers.78.mlp.down_proj.weight": "model-00020-of-00021.safetensors",
|
539 |
+
"model.layers.78.mlp.gate_proj.weight": "model-00020-of-00021.safetensors",
|
540 |
+
"model.layers.78.mlp.up_proj.weight": "model-00020-of-00021.safetensors",
|
541 |
+
"model.layers.78.post_attention_layernorm.weight": "model-00020-of-00021.safetensors",
|
542 |
+
"model.layers.78.self_attn.k_proj.weight": "model-00020-of-00021.safetensors",
|
543 |
+
"model.layers.78.self_attn.o_proj.weight": "model-00020-of-00021.safetensors",
|
544 |
+
"model.layers.78.self_attn.q_proj.weight": "model-00020-of-00021.safetensors",
|
545 |
+
"model.layers.78.self_attn.v_proj.weight": "model-00020-of-00021.safetensors",
|
546 |
+
"model.layers.79.input_layernorm.weight": "model-00020-of-00021.safetensors",
|
547 |
+
"model.layers.79.mlp.down_proj.weight": "model-00021-of-00021.safetensors",
|
548 |
+
"model.layers.79.mlp.gate_proj.weight": "model-00021-of-00021.safetensors",
|
549 |
+
"model.layers.79.mlp.up_proj.weight": "model-00021-of-00021.safetensors",
|
550 |
+
"model.layers.79.post_attention_layernorm.weight": "model-00020-of-00021.safetensors",
|
551 |
+
"model.layers.79.self_attn.k_proj.weight": "model-00020-of-00021.safetensors",
|
552 |
+
"model.layers.79.self_attn.o_proj.weight": "model-00020-of-00021.safetensors",
|
553 |
+
"model.layers.79.self_attn.q_proj.weight": "model-00020-of-00021.safetensors",
|
554 |
+
"model.layers.79.self_attn.v_proj.weight": "model-00020-of-00021.safetensors",
|
555 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00021.safetensors",
|
556 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00021.safetensors",
|
557 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00003-of-00021.safetensors",
|
558 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00021.safetensors",
|
559 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00021.safetensors",
|
560 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00021.safetensors",
|
561 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00021.safetensors",
|
562 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00021.safetensors",
|
563 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00021.safetensors",
|
564 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00021.safetensors",
|
565 |
+
"model.layers.9.mlp.down_proj.weight": "model-00004-of-00021.safetensors",
|
566 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00004-of-00021.safetensors",
|
567 |
+
"model.layers.9.mlp.up_proj.weight": "model-00004-of-00021.safetensors",
|
568 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00004-of-00021.safetensors",
|
569 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00021.safetensors",
|
570 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00004-of-00021.safetensors",
|
571 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00021.safetensors",
|
572 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00021.safetensors",
|
573 |
+
"model.norm.weight": "model-00021-of-00021.safetensors"
|
574 |
+
}
|
575 |
+
}
|
modeling_decilm.py
ADDED
@@ -0,0 +1,1681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Nvidia Corporation, Google Inc, HuggingFace Inc, EleutherAI. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code for Nvidia's model is based on the Llama modeling code by HuggingFace,
|
5 |
+
# which is in turn based on EleutherAI's GPT-NeoX library and the GPT-NeoX and
|
6 |
+
# OPT implementations in this library.
|
7 |
+
# Sliding window code based on Gemma2 by Google.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
from transformers import GenerationConfig
|
30 |
+
from transformers.generation.utils import NEED_SETUP_CACHE_CLASSES_MAPPING, GenerationMixin, GenerateOutput
|
31 |
+
from transformers.modeling_utils import PreTrainedModel
|
32 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
33 |
+
from transformers.utils import (
|
34 |
+
add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward,
|
36 |
+
is_flash_attn_greater_or_equal_2_10,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
|
41 |
+
from .block_config import AttentionConfig, FFNConfig
|
42 |
+
from .configuration_decilm import DeciLMConfig
|
43 |
+
from .transformers_4_44_2__activations import ACT2FN
|
44 |
+
from .transformers_4_44_2__cache_utils import Cache, StaticCache
|
45 |
+
from .transformers_4_44_2__modeling_attn_mask_utils import AttentionMaskConverter
|
46 |
+
from .transformers_4_44_2__modeling_flash_attention_utils_backward_compat import _flash_attention_forward
|
47 |
+
from .transformers_4_44_2__modeling_outputs import (
|
48 |
+
BaseModelOutputWithPast,
|
49 |
+
CausalLMOutputWithPast,
|
50 |
+
QuestionAnsweringModelOutput,
|
51 |
+
SequenceClassifierOutputWithPast,
|
52 |
+
TokenClassifierOutput,
|
53 |
+
)
|
54 |
+
from .transformers_4_44_2__modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
55 |
+
from .transformers_4_44_2__pytorch_utils import ALL_LAYERNORM_LAYERS
|
56 |
+
from .variable_cache import VariableCache
|
57 |
+
|
58 |
+
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[DeciLMConfig.model_type] = "DeciLMForCausalLM"
|
59 |
+
logger = logging.get_logger(__name__)
|
60 |
+
|
61 |
+
_CONFIG_FOR_DOC = "DeciLMConfig"
|
62 |
+
|
63 |
+
|
64 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
65 |
+
attention_mask: torch.Tensor,
|
66 |
+
sequence_length: int,
|
67 |
+
target_length: int,
|
68 |
+
dtype: torch.dtype,
|
69 |
+
device: torch.device,
|
70 |
+
min_dtype: float,
|
71 |
+
cache_position: torch.Tensor,
|
72 |
+
batch_size: int,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
76 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
attention_mask (`torch.Tensor`):
|
80 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
81 |
+
sequence_length (`int`):
|
82 |
+
The sequence length being processed.
|
83 |
+
target_length (`int`):
|
84 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
85 |
+
dtype (`torch.dtype`):
|
86 |
+
The dtype to use for the 4D attention mask.
|
87 |
+
device (`torch.device`):
|
88 |
+
The device to place the 4D attention mask on.
|
89 |
+
min_dtype (`float`):
|
90 |
+
The minimum value representable with the dtype `dtype`.
|
91 |
+
cache_position (`torch.Tensor`):
|
92 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
93 |
+
batch_size (`torch.Tensor`):
|
94 |
+
Batch size.
|
95 |
+
"""
|
96 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
97 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
98 |
+
causal_mask = attention_mask
|
99 |
+
else:
|
100 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
101 |
+
if sequence_length != 1:
|
102 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
103 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
104 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
105 |
+
if attention_mask is not None:
|
106 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
107 |
+
mask_length = attention_mask.shape[-1]
|
108 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
109 |
+
padding_mask = padding_mask == 0
|
110 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
111 |
+
padding_mask, min_dtype
|
112 |
+
)
|
113 |
+
|
114 |
+
return causal_mask
|
115 |
+
|
116 |
+
|
117 |
+
class DeciLMRMSNorm(nn.Module):
|
118 |
+
def __init__(self, hidden_size, eps=1e-6):
|
119 |
+
"""
|
120 |
+
DeciLMRMSNorm is equivalent to T5LayerNorm
|
121 |
+
"""
|
122 |
+
super().__init__()
|
123 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
124 |
+
self.variance_epsilon = eps
|
125 |
+
|
126 |
+
def forward(self, hidden_states):
|
127 |
+
input_dtype = hidden_states.dtype
|
128 |
+
hidden_states = hidden_states.to(torch.float32)
|
129 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
130 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
131 |
+
return self.weight * hidden_states.to(input_dtype)
|
132 |
+
|
133 |
+
def extra_repr(self):
|
134 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
135 |
+
|
136 |
+
|
137 |
+
ALL_LAYERNORM_LAYERS.append(DeciLMRMSNorm)
|
138 |
+
|
139 |
+
|
140 |
+
class DeciLMRotaryEmbedding(nn.Module):
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
dim=None,
|
144 |
+
max_position_embeddings=2048,
|
145 |
+
base=10000,
|
146 |
+
device=None,
|
147 |
+
scaling_factor=1.0,
|
148 |
+
rope_type="default",
|
149 |
+
config: Optional[DeciLMConfig] = None,
|
150 |
+
):
|
151 |
+
super().__init__()
|
152 |
+
# TODO (joao): remove the `if` below, only used for BC
|
153 |
+
self.rope_kwargs = {}
|
154 |
+
if config is None:
|
155 |
+
logger.warning_once(
|
156 |
+
"`DeciLMRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
157 |
+
"`config` argument. All other arguments will be removed in v4.45"
|
158 |
+
)
|
159 |
+
self.rope_kwargs = {
|
160 |
+
"rope_type": rope_type,
|
161 |
+
"factor": scaling_factor,
|
162 |
+
"dim": dim,
|
163 |
+
"base": base,
|
164 |
+
"max_position_embeddings": max_position_embeddings,
|
165 |
+
}
|
166 |
+
self.rope_type = rope_type
|
167 |
+
self.max_seq_len_cached = max_position_embeddings
|
168 |
+
self.original_max_seq_len = max_position_embeddings
|
169 |
+
else:
|
170 |
+
# BC: "rope_type" was originally "type"
|
171 |
+
if config.rope_scaling is not None:
|
172 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
173 |
+
else:
|
174 |
+
self.rope_type = "default"
|
175 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
176 |
+
self.original_max_seq_len = config.max_position_embeddings
|
177 |
+
|
178 |
+
self.config = config
|
179 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
180 |
+
|
181 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
182 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
183 |
+
self.original_inv_freq = self.inv_freq
|
184 |
+
|
185 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
186 |
+
"""
|
187 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
188 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
189 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
190 |
+
"""
|
191 |
+
seq_len = torch.max(position_ids) + 1
|
192 |
+
if seq_len > self.max_seq_len_cached: # growth
|
193 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
194 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
195 |
+
)
|
196 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
197 |
+
self.max_seq_len_cached = seq_len
|
198 |
+
|
199 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
200 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
201 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
202 |
+
|
203 |
+
@torch.no_grad()
|
204 |
+
def forward(self, x, position_ids):
|
205 |
+
if "dynamic" in self.rope_type:
|
206 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
207 |
+
|
208 |
+
# Core RoPE block
|
209 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
210 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
211 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
212 |
+
device_type = x.device.type
|
213 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
214 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
215 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
216 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
217 |
+
cos = emb.cos()
|
218 |
+
sin = emb.sin()
|
219 |
+
|
220 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
221 |
+
cos = cos * self.attention_scaling
|
222 |
+
sin = sin * self.attention_scaling
|
223 |
+
|
224 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
225 |
+
|
226 |
+
|
227 |
+
class DeciLMLinearScalingRotaryEmbedding(DeciLMRotaryEmbedding):
|
228 |
+
"""DeciLMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
229 |
+
|
230 |
+
def __init__(self, *args, **kwargs):
|
231 |
+
logger.warning_once(
|
232 |
+
"`DeciLMLinearScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
|
233 |
+
"`DeciLMRotaryEmbedding`, which now also does linear scaling (simply pass the model config to __init__)."
|
234 |
+
)
|
235 |
+
kwargs["rope_type"] = "linear"
|
236 |
+
super().__init__(*args, **kwargs)
|
237 |
+
|
238 |
+
|
239 |
+
class DeciLMDynamicNTKScalingRotaryEmbedding(DeciLMRotaryEmbedding):
|
240 |
+
"""DeciLMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
241 |
+
|
242 |
+
def __init__(self, *args, **kwargs):
|
243 |
+
logger.warning_once(
|
244 |
+
"`DeciLMDynamicNTKScalingRotaryEmbedding` is deprecated an will be removed in v4.45. Please use "
|
245 |
+
"`DeciLMRotaryEmbedding`, which now also does dynamic ntk scaling (simply pass the model config to "
|
246 |
+
"__init__)."
|
247 |
+
)
|
248 |
+
kwargs["rope_type"] = "dynamic"
|
249 |
+
super().__init__(*args, **kwargs)
|
250 |
+
|
251 |
+
|
252 |
+
def rotate_half(x):
|
253 |
+
"""Rotates half the hidden dims of the input."""
|
254 |
+
x1 = x[..., : x.shape[-1] // 2]
|
255 |
+
x2 = x[..., x.shape[-1] // 2:]
|
256 |
+
return torch.cat((-x2, x1), dim=-1)
|
257 |
+
|
258 |
+
|
259 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
260 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
q (`torch.Tensor`): The query tensor.
|
264 |
+
k (`torch.Tensor`): The key tensor.
|
265 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
266 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
267 |
+
position_ids (`torch.Tensor`, *optional*):
|
268 |
+
Deprecated and unused.
|
269 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
270 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
271 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
272 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
273 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
274 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
275 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
276 |
+
Returns:
|
277 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
278 |
+
"""
|
279 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
280 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
281 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
282 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
283 |
+
return q_embed, k_embed
|
284 |
+
|
285 |
+
|
286 |
+
class DeciLMMLP(nn.Module):
|
287 |
+
def __init__(self,
|
288 |
+
config: DeciLMConfig,
|
289 |
+
ffn_config: FFNConfig,
|
290 |
+
):
|
291 |
+
super().__init__()
|
292 |
+
self.config = config
|
293 |
+
self.ffn_config = ffn_config
|
294 |
+
self.hidden_size = config.hidden_size
|
295 |
+
self.intermediate_size = _ffn_mult_to_intermediate_size(
|
296 |
+
ffn_config.ffn_mult, config.hidden_size) # DeciLM-specific code
|
297 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
298 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
299 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
300 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
301 |
+
|
302 |
+
if ffn_config.sparsify is not None:
|
303 |
+
self.register_full_backward_hook(sparsity_backward_hook)
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
if self.config.pretraining_tp > 1:
|
307 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
308 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
309 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
310 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
311 |
+
|
312 |
+
gate_proj = torch.cat(
|
313 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
314 |
+
)
|
315 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
316 |
+
|
317 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
318 |
+
down_proj = [
|
319 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
320 |
+
]
|
321 |
+
down_proj = sum(down_proj)
|
322 |
+
else:
|
323 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
324 |
+
|
325 |
+
return down_proj
|
326 |
+
|
327 |
+
|
328 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
329 |
+
"""
|
330 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
331 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
332 |
+
"""
|
333 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
334 |
+
if n_rep == 1:
|
335 |
+
return hidden_states
|
336 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
337 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
338 |
+
|
339 |
+
|
340 |
+
class DeciLMAttention(nn.Module):
|
341 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
342 |
+
|
343 |
+
def __init__(self,
|
344 |
+
config: DeciLMConfig,
|
345 |
+
attention_config: AttentionConfig,
|
346 |
+
layer_idx: Optional[int] = None,
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
self.config = config
|
350 |
+
self.attention_config = attention_config
|
351 |
+
self.layer_idx = layer_idx
|
352 |
+
if layer_idx is None:
|
353 |
+
logger.warning_once(
|
354 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
355 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
356 |
+
"when creating this class."
|
357 |
+
)
|
358 |
+
|
359 |
+
self.attention_dropout = config.attention_dropout
|
360 |
+
self.hidden_size = config.hidden_size
|
361 |
+
self.num_heads = config.num_attention_heads
|
362 |
+
self.head_dim = self.hidden_size // self.num_heads
|
363 |
+
self.num_key_value_groups = attention_config.n_heads_in_group # DeciLM-specific code
|
364 |
+
self.num_key_value_heads = self.num_heads // self.num_key_value_groups # DeciLM-specific code
|
365 |
+
self.max_position_embeddings = config.max_position_embeddings
|
366 |
+
self.rope_theta = config.rope_theta
|
367 |
+
self.is_causal = True
|
368 |
+
|
369 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
370 |
+
raise ValueError(
|
371 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
372 |
+
f" and `num_heads`: {self.num_heads})."
|
373 |
+
)
|
374 |
+
|
375 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
376 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
377 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
378 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
379 |
+
|
380 |
+
# TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
|
381 |
+
self.rotary_emb = DeciLMRotaryEmbedding(config=self.config)
|
382 |
+
|
383 |
+
if attention_config.sparsify is not None:
|
384 |
+
self.register_full_backward_hook(sparsity_backward_hook)
|
385 |
+
|
386 |
+
def forward(
|
387 |
+
self,
|
388 |
+
hidden_states: torch.Tensor,
|
389 |
+
attention_mask: Optional[torch.Tensor] = None,
|
390 |
+
position_ids: Optional[torch.LongTensor] = None,
|
391 |
+
past_key_value: Optional[Cache] = None,
|
392 |
+
output_attentions: bool = False,
|
393 |
+
use_cache: bool = False,
|
394 |
+
cache_position: Optional[torch.LongTensor] = None,
|
395 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
396 |
+
**kwargs,
|
397 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
398 |
+
bsz, q_len, _ = hidden_states.size()
|
399 |
+
if self.config.pretraining_tp > 1:
|
400 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
401 |
+
query_slices = self.q_proj.weight.split(
|
402 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
403 |
+
)
|
404 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
405 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
406 |
+
|
407 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
408 |
+
query_states = torch.cat(query_states, dim=-1)
|
409 |
+
|
410 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
411 |
+
key_states = torch.cat(key_states, dim=-1)
|
412 |
+
|
413 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
414 |
+
value_states = torch.cat(value_states, dim=-1)
|
415 |
+
|
416 |
+
else:
|
417 |
+
query_states = self.q_proj(hidden_states)
|
418 |
+
key_states = self.k_proj(hidden_states)
|
419 |
+
value_states = self.v_proj(hidden_states)
|
420 |
+
|
421 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
422 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
423 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
424 |
+
|
425 |
+
if position_embeddings is None:
|
426 |
+
logger.warning_once(
|
427 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
428 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
429 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
430 |
+
"removed and `position_embeddings` will be mandatory."
|
431 |
+
)
|
432 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
433 |
+
else:
|
434 |
+
cos, sin = position_embeddings
|
435 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
436 |
+
|
437 |
+
if past_key_value is not None:
|
438 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
439 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
440 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
441 |
+
|
442 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
443 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
444 |
+
|
445 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
446 |
+
|
447 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
448 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
449 |
+
attn_weights = attn_weights + causal_mask
|
450 |
+
|
451 |
+
# upcast attention to fp32
|
452 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
453 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
454 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
455 |
+
|
456 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
457 |
+
raise ValueError(
|
458 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
459 |
+
f" {attn_output.size()}"
|
460 |
+
)
|
461 |
+
|
462 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
463 |
+
|
464 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
465 |
+
|
466 |
+
if self.config.pretraining_tp > 1:
|
467 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
468 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
469 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
470 |
+
else:
|
471 |
+
attn_output = self.o_proj(attn_output)
|
472 |
+
|
473 |
+
if not output_attentions:
|
474 |
+
attn_weights = None
|
475 |
+
|
476 |
+
return attn_output, attn_weights, past_key_value
|
477 |
+
|
478 |
+
|
479 |
+
class DeciLMFlashAttention2(DeciLMAttention):
|
480 |
+
"""
|
481 |
+
DeciLM flash attention module. This module inherits from `DeciLMAttention` as the weights of the module stays
|
482 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
483 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
484 |
+
"""
|
485 |
+
|
486 |
+
def __init__(self, *args, **kwargs):
|
487 |
+
super().__init__(*args, **kwargs)
|
488 |
+
|
489 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
490 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
491 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
492 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
493 |
+
|
494 |
+
self.sliding_window = self.attention_config.prefill_sliding_window
|
495 |
+
|
496 |
+
def forward(
|
497 |
+
self,
|
498 |
+
hidden_states: torch.Tensor,
|
499 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
500 |
+
position_ids: Optional[torch.LongTensor] = None,
|
501 |
+
past_key_value: Optional[Cache] = None,
|
502 |
+
output_attentions: bool = False,
|
503 |
+
use_cache: bool = False,
|
504 |
+
cache_position: Optional[torch.LongTensor] = None,
|
505 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
506 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
507 |
+
output_attentions = False
|
508 |
+
|
509 |
+
bsz, q_len, _ = hidden_states.size()
|
510 |
+
|
511 |
+
query_states = self.q_proj(hidden_states)
|
512 |
+
key_states = self.k_proj(hidden_states)
|
513 |
+
value_states = self.v_proj(hidden_states)
|
514 |
+
|
515 |
+
# Flash attention requires the input to have the shape
|
516 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
517 |
+
# therefore we just need to keep the original shape
|
518 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
519 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
520 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
521 |
+
|
522 |
+
if position_embeddings is None:
|
523 |
+
logger.warning_once(
|
524 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
525 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
526 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
527 |
+
"removed and `position_embeddings` will be mandatory."
|
528 |
+
)
|
529 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
530 |
+
else:
|
531 |
+
cos, sin = position_embeddings
|
532 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
533 |
+
|
534 |
+
if past_key_value is not None:
|
535 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
536 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
537 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
538 |
+
|
539 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
540 |
+
# to be able to avoid many of these transpose/reshape/view.
|
541 |
+
query_states = query_states.transpose(1, 2)
|
542 |
+
key_states = key_states.transpose(1, 2)
|
543 |
+
value_states = value_states.transpose(1, 2)
|
544 |
+
|
545 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
546 |
+
|
547 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
548 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
549 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
550 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
551 |
+
# in fp32. (DeciLMRMSNorm handles it correctly)
|
552 |
+
|
553 |
+
input_dtype = query_states.dtype
|
554 |
+
if input_dtype == torch.float32:
|
555 |
+
if torch.is_autocast_enabled():
|
556 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
557 |
+
# Handle the case where the model is quantized
|
558 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
559 |
+
target_dtype = self.config._pre_quantization_dtype
|
560 |
+
else:
|
561 |
+
target_dtype = self.q_proj.weight.dtype
|
562 |
+
|
563 |
+
logger.warning_once(
|
564 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
565 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
566 |
+
f" {target_dtype}."
|
567 |
+
)
|
568 |
+
|
569 |
+
query_states = query_states.to(target_dtype)
|
570 |
+
key_states = key_states.to(target_dtype)
|
571 |
+
value_states = value_states.to(target_dtype)
|
572 |
+
|
573 |
+
attn_output = _flash_attention_forward(
|
574 |
+
query_states,
|
575 |
+
key_states,
|
576 |
+
value_states,
|
577 |
+
attention_mask,
|
578 |
+
q_len,
|
579 |
+
position_ids=position_ids,
|
580 |
+
dropout=dropout_rate,
|
581 |
+
sliding_window=self.sliding_window,
|
582 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
583 |
+
is_causal=self.is_causal,
|
584 |
+
)
|
585 |
+
|
586 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
587 |
+
attn_output = self.o_proj(attn_output)
|
588 |
+
|
589 |
+
if not output_attentions:
|
590 |
+
attn_weights = None
|
591 |
+
|
592 |
+
return attn_output, attn_weights, past_key_value
|
593 |
+
|
594 |
+
|
595 |
+
DECILM_ATTENTION_CLASSES = {
|
596 |
+
"eager": DeciLMAttention,
|
597 |
+
"flash_attention_2": DeciLMFlashAttention2,
|
598 |
+
}
|
599 |
+
|
600 |
+
|
601 |
+
class DeciLMDecoderLayer(nn.Module):
|
602 |
+
# DeciLM-specific code
|
603 |
+
def __init__(self, config: DeciLMConfig, layer_idx: int):
|
604 |
+
super().__init__()
|
605 |
+
self.config = config
|
606 |
+
self.hidden_size = config.hidden_size
|
607 |
+
self.block_config = config.block_configs[layer_idx]
|
608 |
+
self.attention_config = self.block_config.attention
|
609 |
+
self.ffn_config = self.block_config.ffn
|
610 |
+
|
611 |
+
if not self.attention_config.no_op:
|
612 |
+
self.input_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
613 |
+
if not self.attention_config.replace_with_linear:
|
614 |
+
self.self_attn = DECILM_ATTENTION_CLASSES[config._attn_implementation](
|
615 |
+
config=config, attention_config=self.attention_config, layer_idx=layer_idx)
|
616 |
+
else:
|
617 |
+
self.self_attn = DeciLMLinearAttention(config)
|
618 |
+
|
619 |
+
if not self.ffn_config.no_op:
|
620 |
+
self.post_attention_layernorm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
621 |
+
if not self.ffn_config.replace_with_linear:
|
622 |
+
self.mlp = DeciLMMLP(config, self.ffn_config)
|
623 |
+
else:
|
624 |
+
self.mlp = DeciLMLinearMLP(config)
|
625 |
+
|
626 |
+
self.is_sliding = self.attention_config.is_sliding
|
627 |
+
self.sliding_window = self.attention_config.prefill_sliding_window
|
628 |
+
|
629 |
+
def forward(
|
630 |
+
self,
|
631 |
+
hidden_states: torch.Tensor,
|
632 |
+
attention_mask: Optional[torch.Tensor] = None,
|
633 |
+
position_ids: Optional[torch.LongTensor] = None,
|
634 |
+
past_key_value: Optional[Cache] = None,
|
635 |
+
output_attentions: Optional[bool] = False,
|
636 |
+
use_cache: Optional[bool] = False,
|
637 |
+
cache_position: Optional[torch.LongTensor] = None,
|
638 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
639 |
+
**kwargs,
|
640 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
641 |
+
"""
|
642 |
+
Args:
|
643 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
644 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
645 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
646 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
647 |
+
output_attentions (`bool`, *optional*):
|
648 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
649 |
+
returned tensors for more detail.
|
650 |
+
use_cache (`bool`, *optional*):
|
651 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
652 |
+
(see `past_key_values`).
|
653 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
654 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
655 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
656 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
657 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
658 |
+
with `head_dim` being the embedding dimension of each attention head.
|
659 |
+
kwargs (`dict`, *optional*):
|
660 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
661 |
+
into the model
|
662 |
+
"""
|
663 |
+
if self.attention_config.unshifted_sink and self.attention_config.is_sink:
|
664 |
+
attention_mask = self._unshifted_sink_mask(
|
665 |
+
attention_mask, hidden_states,
|
666 |
+
self.attention_config.window_length, self.attention_config.num_sink_tokens)
|
667 |
+
else:
|
668 |
+
attention_mask = self._gemma2_window_mask(attention_mask, hidden_states, past_key_value)
|
669 |
+
|
670 |
+
self_attn_weights = None
|
671 |
+
present_key_value = past_key_value
|
672 |
+
if self.attention_config.no_op:
|
673 |
+
pass
|
674 |
+
elif self.attention_config.replace_with_linear:
|
675 |
+
residual = hidden_states
|
676 |
+
hidden_states = self.input_layernorm(hidden_states)
|
677 |
+
hidden_states = self.self_attn(hidden_states)
|
678 |
+
hidden_states = residual + hidden_states
|
679 |
+
else:
|
680 |
+
residual = hidden_states
|
681 |
+
hidden_states = self.input_layernorm(hidden_states)
|
682 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
683 |
+
hidden_states=hidden_states,
|
684 |
+
attention_mask=attention_mask,
|
685 |
+
position_ids=position_ids,
|
686 |
+
past_key_value=past_key_value,
|
687 |
+
output_attentions=output_attentions,
|
688 |
+
use_cache=use_cache,
|
689 |
+
cache_position=cache_position,
|
690 |
+
position_embeddings=position_embeddings,
|
691 |
+
**kwargs,
|
692 |
+
)
|
693 |
+
hidden_states = residual + hidden_states
|
694 |
+
|
695 |
+
if not self.ffn_config.no_op:
|
696 |
+
residual = hidden_states
|
697 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
698 |
+
hidden_states = self.mlp(hidden_states)
|
699 |
+
hidden_states = residual + hidden_states
|
700 |
+
|
701 |
+
outputs = (hidden_states,)
|
702 |
+
|
703 |
+
if output_attentions:
|
704 |
+
outputs += (self_attn_weights,)
|
705 |
+
|
706 |
+
if use_cache:
|
707 |
+
outputs += (present_key_value,)
|
708 |
+
|
709 |
+
return outputs
|
710 |
+
|
711 |
+
def _gemma2_window_mask(self,
|
712 |
+
attention_mask: Optional[torch.Tensor],
|
713 |
+
hidden_states: torch.Tensor,
|
714 |
+
past_key_value: Optional[VariableCache],
|
715 |
+
) -> Optional[torch.Tensor]:
|
716 |
+
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
|
717 |
+
# Flash-attn is a 2D tensor
|
718 |
+
if self.config._attn_implementation == "flash_attention_2":
|
719 |
+
if past_key_value is not None: # when decoding
|
720 |
+
attention_mask = attention_mask[:, -self.sliding_window:]
|
721 |
+
else:
|
722 |
+
min_dtype = torch.finfo(hidden_states.dtype).min
|
723 |
+
sliding_window_mask = torch.tril(
|
724 |
+
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
|
725 |
+
)
|
726 |
+
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
727 |
+
if attention_mask.shape[-1] <= 1: # when decoding
|
728 |
+
attention_mask = attention_mask[:, :, :, -self.sliding_window:]
|
729 |
+
return attention_mask
|
730 |
+
|
731 |
+
def _unshifted_sink_mask(self,
|
732 |
+
attention_mask: torch.Tensor,
|
733 |
+
hidden_states: torch.Tensor,
|
734 |
+
window_length: int,
|
735 |
+
num_sink_tokens: Optional[int],
|
736 |
+
) -> torch.Tensor:
|
737 |
+
assert self.config._attn_implementation == "eager", "Unshifted sink is only supported in 'eager' mode."
|
738 |
+
assert attention_mask is not None, "The attention mask seems to not be prepared"
|
739 |
+
|
740 |
+
attention_mask = attention_mask.clone()
|
741 |
+
min_dtype = torch.finfo(hidden_states.dtype).min
|
742 |
+
|
743 |
+
if window_length == 0:
|
744 |
+
attention_mask = torch.full_like(attention_mask, fill_value=min_dtype)
|
745 |
+
else:
|
746 |
+
query_length = attention_mask.shape[-2]
|
747 |
+
is_decode = (query_length == 1)
|
748 |
+
if is_decode:
|
749 |
+
attention_mask[:, :, :, :-window_length] = min_dtype
|
750 |
+
else:
|
751 |
+
sliding_window_mask = torch.tril(
|
752 |
+
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-window_length
|
753 |
+
)
|
754 |
+
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
|
755 |
+
|
756 |
+
attention_mask[:, :, :, :num_sink_tokens] = 0
|
757 |
+
return attention_mask
|
758 |
+
|
759 |
+
|
760 |
+
DECILM_START_DOCSTRING = r"""
|
761 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
762 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
763 |
+
etc.)
|
764 |
+
|
765 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
766 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
767 |
+
and behavior.
|
768 |
+
|
769 |
+
Parameters:
|
770 |
+
config ([`DeciLMConfig`]):
|
771 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
772 |
+
load the weights associated with the model, only the configuration. Check out the
|
773 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
774 |
+
"""
|
775 |
+
|
776 |
+
|
777 |
+
@add_start_docstrings(
|
778 |
+
"The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
|
779 |
+
DECILM_START_DOCSTRING,
|
780 |
+
)
|
781 |
+
class DeciLMPreTrainedModel(PreTrainedModel):
|
782 |
+
config_class = DeciLMConfig
|
783 |
+
base_model_prefix = "model"
|
784 |
+
supports_gradient_checkpointing = True
|
785 |
+
_no_split_modules = ["DeciLMDecoderLayer"]
|
786 |
+
_skip_keys_device_placement = ["past_key_values"]
|
787 |
+
_supports_flash_attn_2 = True
|
788 |
+
_supports_sdpa = False
|
789 |
+
_supports_cache_class = True
|
790 |
+
_supports_quantized_cache = False
|
791 |
+
_supports_static_cache = True
|
792 |
+
|
793 |
+
def _init_weights(self, module):
|
794 |
+
std = self.config.initializer_range
|
795 |
+
if isinstance(module, nn.Linear):
|
796 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
797 |
+
if module.bias is not None:
|
798 |
+
module.bias.data.zero_()
|
799 |
+
elif isinstance(module, nn.Embedding):
|
800 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
801 |
+
if module.padding_idx is not None:
|
802 |
+
module.weight.data[module.padding_idx].zero_()
|
803 |
+
|
804 |
+
def _prepare_generation_config(
|
805 |
+
self, generation_config: Optional[GenerationConfig], **kwargs: dict
|
806 |
+
) -> tuple[GenerationConfig, dict]:
|
807 |
+
# DeciLM-specific code
|
808 |
+
generation_config, model_kwargs = super()._prepare_generation_config(generation_config, **kwargs)
|
809 |
+
generation_config.cache_implementation = "variable"
|
810 |
+
NEED_SETUP_CACHE_CLASSES_MAPPING["variable"] = VariableCache
|
811 |
+
return generation_config, model_kwargs
|
812 |
+
|
813 |
+
|
814 |
+
DECILM_INPUTS_DOCSTRING = r"""
|
815 |
+
Args:
|
816 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
817 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
818 |
+
it.
|
819 |
+
|
820 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
821 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
822 |
+
|
823 |
+
[What are input IDs?](../glossary#input-ids)
|
824 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
825 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
826 |
+
|
827 |
+
- 1 for tokens that are **not masked**,
|
828 |
+
- 0 for tokens that are **masked**.
|
829 |
+
|
830 |
+
[What are attention masks?](../glossary#attention-mask)
|
831 |
+
|
832 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
833 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
834 |
+
|
835 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
836 |
+
`past_key_values`).
|
837 |
+
|
838 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
839 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
840 |
+
information on the default strategy.
|
841 |
+
|
842 |
+
- 1 indicates the head is **not masked**,
|
843 |
+
- 0 indicates the head is **masked**.
|
844 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
845 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
846 |
+
config.n_positions - 1]`.
|
847 |
+
|
848 |
+
[What are position IDs?](../glossary#position-ids)
|
849 |
+
past_key_values (`VariableCache`, *optional*):
|
850 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
851 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
852 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
853 |
+
|
854 |
+
If passed to the forward function, past_key_values must be a VariableCache object (see imports).
|
855 |
+
For generation purposes, this is already handled inside model.generate().
|
856 |
+
|
857 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
858 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
859 |
+
of shape `(batch_size, sequence_length)`.
|
860 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
861 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
862 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
863 |
+
model's internal embedding lookup matrix.
|
864 |
+
use_cache (`bool`, *optional*):
|
865 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
866 |
+
`past_key_values`).
|
867 |
+
output_attentions (`bool`, *optional*):
|
868 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
869 |
+
tensors for more detail.
|
870 |
+
output_hidden_states (`bool`, *optional*):
|
871 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
872 |
+
more detail.
|
873 |
+
return_dict (`bool`, *optional*):
|
874 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
875 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
876 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
877 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
878 |
+
the complete sequence length.
|
879 |
+
"""
|
880 |
+
|
881 |
+
|
882 |
+
@add_start_docstrings(
|
883 |
+
"The bare DeciLM Model outputting raw hidden-states without any specific head on top.",
|
884 |
+
DECILM_START_DOCSTRING,
|
885 |
+
)
|
886 |
+
class DeciLMModel(DeciLMPreTrainedModel):
|
887 |
+
"""
|
888 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeciLMDecoderLayer`]
|
889 |
+
|
890 |
+
Args:
|
891 |
+
config: DeciLMConfig
|
892 |
+
"""
|
893 |
+
|
894 |
+
def __init__(self, config: DeciLMConfig):
|
895 |
+
super().__init__(config)
|
896 |
+
self.padding_idx = config.pad_token_id
|
897 |
+
self.vocab_size = config.vocab_size
|
898 |
+
|
899 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
900 |
+
self.layers = nn.ModuleList(
|
901 |
+
[DeciLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
902 |
+
)
|
903 |
+
self.norm = DeciLMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
904 |
+
self.rotary_emb = DeciLMRotaryEmbedding(config=config)
|
905 |
+
self.gradient_checkpointing = False
|
906 |
+
|
907 |
+
# Initialize weights and apply final processing
|
908 |
+
self.post_init()
|
909 |
+
|
910 |
+
def get_input_embeddings(self):
|
911 |
+
return self.embed_tokens
|
912 |
+
|
913 |
+
def set_input_embeddings(self, value):
|
914 |
+
self.embed_tokens = value
|
915 |
+
|
916 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
917 |
+
def forward(
|
918 |
+
self,
|
919 |
+
input_ids: torch.LongTensor = None,
|
920 |
+
attention_mask: Optional[torch.Tensor] = None,
|
921 |
+
position_ids: Optional[torch.LongTensor] = None,
|
922 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
923 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
924 |
+
use_cache: Optional[bool] = None,
|
925 |
+
output_attentions: Optional[bool] = None,
|
926 |
+
output_hidden_states: Optional[bool] = None,
|
927 |
+
return_dict: Optional[bool] = None,
|
928 |
+
cache_position: Optional[torch.LongTensor] = None,
|
929 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
930 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
931 |
+
output_hidden_states = (
|
932 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
933 |
+
)
|
934 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
935 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
936 |
+
|
937 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
938 |
+
raise ValueError(
|
939 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
940 |
+
)
|
941 |
+
|
942 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
943 |
+
logger.warning_once(
|
944 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
945 |
+
)
|
946 |
+
use_cache = False
|
947 |
+
|
948 |
+
if inputs_embeds is None:
|
949 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
950 |
+
|
951 |
+
is_legacy_cache_format = (past_key_values is not None) and not isinstance(past_key_values, Cache)
|
952 |
+
if is_legacy_cache_format:
|
953 |
+
raise NotImplementedError("DeciLMModel does not support legacy cache format, please use a newer "
|
954 |
+
"transformers version or use VariableCache explicitly (see import in this file).")
|
955 |
+
|
956 |
+
if cache_position is None:
|
957 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
958 |
+
cache_position = torch.arange(
|
959 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
960 |
+
)
|
961 |
+
if position_ids is None:
|
962 |
+
position_ids = cache_position.unsqueeze(0)
|
963 |
+
|
964 |
+
causal_mask = self._update_causal_mask(
|
965 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
966 |
+
)
|
967 |
+
hidden_states = inputs_embeds
|
968 |
+
|
969 |
+
# create position embeddings to be shared across the decoder layers
|
970 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
971 |
+
|
972 |
+
# decoder layers
|
973 |
+
all_hidden_states = () if output_hidden_states else None
|
974 |
+
all_self_attns = () if output_attentions else None
|
975 |
+
next_decoder_cache = None
|
976 |
+
|
977 |
+
for decoder_layer in self.layers:
|
978 |
+
if output_hidden_states:
|
979 |
+
all_hidden_states += (hidden_states,)
|
980 |
+
|
981 |
+
if self.gradient_checkpointing and self.training:
|
982 |
+
layer_outputs = self._gradient_checkpointing_func(
|
983 |
+
decoder_layer.__call__,
|
984 |
+
hidden_states,
|
985 |
+
causal_mask,
|
986 |
+
position_ids,
|
987 |
+
past_key_values,
|
988 |
+
output_attentions,
|
989 |
+
use_cache,
|
990 |
+
cache_position,
|
991 |
+
position_embeddings,
|
992 |
+
)
|
993 |
+
else:
|
994 |
+
layer_outputs = decoder_layer(
|
995 |
+
hidden_states,
|
996 |
+
attention_mask=causal_mask,
|
997 |
+
position_ids=position_ids,
|
998 |
+
past_key_value=past_key_values,
|
999 |
+
output_attentions=output_attentions,
|
1000 |
+
use_cache=use_cache,
|
1001 |
+
cache_position=cache_position,
|
1002 |
+
position_embeddings=position_embeddings,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
hidden_states = layer_outputs[0]
|
1006 |
+
|
1007 |
+
if use_cache:
|
1008 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1009 |
+
|
1010 |
+
if output_attentions:
|
1011 |
+
all_self_attns += (layer_outputs[1],)
|
1012 |
+
|
1013 |
+
hidden_states = self.norm(hidden_states)
|
1014 |
+
|
1015 |
+
# add hidden states from the last decoder layer
|
1016 |
+
if output_hidden_states:
|
1017 |
+
all_hidden_states += (hidden_states,)
|
1018 |
+
|
1019 |
+
next_cache = next_decoder_cache if use_cache else None
|
1020 |
+
|
1021 |
+
if not return_dict:
|
1022 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1023 |
+
return BaseModelOutputWithPast(
|
1024 |
+
last_hidden_state=hidden_states,
|
1025 |
+
past_key_values=next_cache,
|
1026 |
+
hidden_states=all_hidden_states,
|
1027 |
+
attentions=all_self_attns,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
def _update_causal_mask(
|
1031 |
+
self,
|
1032 |
+
attention_mask: torch.Tensor,
|
1033 |
+
input_tensor: torch.Tensor,
|
1034 |
+
cache_position: torch.Tensor,
|
1035 |
+
past_key_values: Cache,
|
1036 |
+
output_attentions: bool,
|
1037 |
+
):
|
1038 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
1039 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
1040 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
1041 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
1042 |
+
|
1043 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1044 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1045 |
+
return attention_mask
|
1046 |
+
return None
|
1047 |
+
|
1048 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1049 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1050 |
+
# to infer the attention mask.
|
1051 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1052 |
+
assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
|
1053 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
1054 |
+
|
1055 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1056 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
1057 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1058 |
+
attention_mask,
|
1059 |
+
inputs_embeds=input_tensor,
|
1060 |
+
past_key_values_length=past_seen_tokens,
|
1061 |
+
is_training=self.training,
|
1062 |
+
) and all([not layer.is_sliding for layer in self.layers]):
|
1063 |
+
return None
|
1064 |
+
|
1065 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
1066 |
+
min_dtype = torch.finfo(dtype).min
|
1067 |
+
sequence_length = input_tensor.shape[1]
|
1068 |
+
if using_static_cache:
|
1069 |
+
target_length = past_key_values.get_max_length()
|
1070 |
+
else:
|
1071 |
+
target_length = (
|
1072 |
+
attention_mask.shape[-1]
|
1073 |
+
if isinstance(attention_mask, torch.Tensor)
|
1074 |
+
else past_seen_tokens + sequence_length + 1
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1078 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1079 |
+
attention_mask,
|
1080 |
+
sequence_length=sequence_length,
|
1081 |
+
target_length=target_length,
|
1082 |
+
dtype=dtype,
|
1083 |
+
device=device,
|
1084 |
+
min_dtype=min_dtype,
|
1085 |
+
cache_position=cache_position,
|
1086 |
+
batch_size=input_tensor.shape[0],
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
if (
|
1090 |
+
self.config._attn_implementation == "sdpa"
|
1091 |
+
and attention_mask is not None
|
1092 |
+
and attention_mask.device.type == "cuda"
|
1093 |
+
and not output_attentions
|
1094 |
+
):
|
1095 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1096 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1097 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1098 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1099 |
+
|
1100 |
+
return causal_mask
|
1101 |
+
|
1102 |
+
|
1103 |
+
class DeciLMForCausalLM(DeciLMPreTrainedModel, GenerationMixin):
|
1104 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1105 |
+
|
1106 |
+
def __init__(self, config):
|
1107 |
+
super().__init__(config)
|
1108 |
+
self.model = DeciLMModel(config)
|
1109 |
+
self.vocab_size = config.vocab_size
|
1110 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1111 |
+
|
1112 |
+
# Initialize weights and apply final processing
|
1113 |
+
self.post_init()
|
1114 |
+
|
1115 |
+
def get_input_embeddings(self):
|
1116 |
+
return self.model.embed_tokens
|
1117 |
+
|
1118 |
+
def set_input_embeddings(self, value):
|
1119 |
+
self.model.embed_tokens = value
|
1120 |
+
|
1121 |
+
def get_output_embeddings(self):
|
1122 |
+
return self.lm_head
|
1123 |
+
|
1124 |
+
def set_output_embeddings(self, new_embeddings):
|
1125 |
+
self.lm_head = new_embeddings
|
1126 |
+
|
1127 |
+
def set_decoder(self, decoder):
|
1128 |
+
self.model = decoder
|
1129 |
+
|
1130 |
+
def get_decoder(self):
|
1131 |
+
return self.model
|
1132 |
+
|
1133 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1134 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1135 |
+
def forward(
|
1136 |
+
self,
|
1137 |
+
input_ids: torch.LongTensor = None,
|
1138 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1139 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1140 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1141 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1142 |
+
labels: Optional[torch.LongTensor] = None,
|
1143 |
+
use_cache: Optional[bool] = None,
|
1144 |
+
output_attentions: Optional[bool] = None,
|
1145 |
+
output_hidden_states: Optional[bool] = None,
|
1146 |
+
return_dict: Optional[bool] = None,
|
1147 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1148 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1149 |
+
r"""
|
1150 |
+
Args:
|
1151 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1152 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1153 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1154 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1155 |
+
|
1156 |
+
Return:
|
1157 |
+
"""
|
1158 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1159 |
+
output_hidden_states = (
|
1160 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1161 |
+
)
|
1162 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1163 |
+
|
1164 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1165 |
+
outputs = self.model(
|
1166 |
+
input_ids=input_ids,
|
1167 |
+
attention_mask=attention_mask,
|
1168 |
+
position_ids=position_ids,
|
1169 |
+
past_key_values=past_key_values,
|
1170 |
+
inputs_embeds=inputs_embeds,
|
1171 |
+
use_cache=use_cache,
|
1172 |
+
output_attentions=output_attentions,
|
1173 |
+
output_hidden_states=output_hidden_states,
|
1174 |
+
return_dict=return_dict,
|
1175 |
+
cache_position=cache_position,
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
hidden_states = outputs[0]
|
1179 |
+
if self.config.pretraining_tp > 1:
|
1180 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1181 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1182 |
+
logits = torch.cat(logits, dim=-1)
|
1183 |
+
else:
|
1184 |
+
logits = self.lm_head(hidden_states)
|
1185 |
+
logits = logits.float()
|
1186 |
+
|
1187 |
+
loss = None
|
1188 |
+
if labels is not None:
|
1189 |
+
# Shift so that tokens < n predict n
|
1190 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1191 |
+
shift_labels = labels[..., 1:].contiguous()
|
1192 |
+
# Flatten the tokens
|
1193 |
+
loss_fct = CrossEntropyLoss()
|
1194 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1195 |
+
shift_labels = shift_labels.view(-1)
|
1196 |
+
# Enable model parallelism
|
1197 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1198 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1199 |
+
|
1200 |
+
if not return_dict:
|
1201 |
+
output = (logits,) + outputs[1:]
|
1202 |
+
return (loss,) + output if loss is not None else output
|
1203 |
+
|
1204 |
+
return CausalLMOutputWithPast(
|
1205 |
+
loss=loss,
|
1206 |
+
logits=logits,
|
1207 |
+
past_key_values=outputs.past_key_values,
|
1208 |
+
hidden_states=outputs.hidden_states,
|
1209 |
+
attentions=outputs.attentions,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
def prepare_inputs_for_generation(
|
1213 |
+
self,
|
1214 |
+
input_ids,
|
1215 |
+
past_key_values=None,
|
1216 |
+
attention_mask=None,
|
1217 |
+
inputs_embeds=None,
|
1218 |
+
cache_position=None,
|
1219 |
+
position_ids=None,
|
1220 |
+
use_cache=True,
|
1221 |
+
**kwargs,
|
1222 |
+
):
|
1223 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
1224 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
1225 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
1226 |
+
if past_key_values is not None:
|
1227 |
+
if inputs_embeds is not None: # Exception 1
|
1228 |
+
input_ids = input_ids[:, -cache_position.shape[0]:]
|
1229 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
1230 |
+
input_ids = input_ids[:, cache_position]
|
1231 |
+
|
1232 |
+
if attention_mask is not None and position_ids is None:
|
1233 |
+
# create position_ids on the fly for batch generation
|
1234 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1235 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1236 |
+
if past_key_values:
|
1237 |
+
position_ids = position_ids[:, -input_ids.shape[1]:]
|
1238 |
+
|
1239 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
1240 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
1241 |
+
|
1242 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1243 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
1244 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
1245 |
+
else:
|
1246 |
+
# The clone here is for the same reason as for `position_ids`.
|
1247 |
+
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
|
1248 |
+
|
1249 |
+
assert not isinstance(past_key_values, StaticCache), "DeciLM does not support StaticCache"
|
1250 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
1251 |
+
if model_inputs["inputs_embeds"] is not None:
|
1252 |
+
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
1253 |
+
device = model_inputs["inputs_embeds"].device
|
1254 |
+
else:
|
1255 |
+
batch_size, sequence_length = model_inputs["input_ids"].shape
|
1256 |
+
device = model_inputs["input_ids"].device
|
1257 |
+
|
1258 |
+
dtype = self.lm_head.weight.dtype
|
1259 |
+
min_dtype = torch.finfo(dtype).min
|
1260 |
+
|
1261 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
1262 |
+
attention_mask,
|
1263 |
+
sequence_length=sequence_length,
|
1264 |
+
target_length=past_key_values.get_max_length(),
|
1265 |
+
dtype=dtype,
|
1266 |
+
device=device,
|
1267 |
+
min_dtype=min_dtype,
|
1268 |
+
cache_position=cache_position,
|
1269 |
+
batch_size=batch_size,
|
1270 |
+
)
|
1271 |
+
|
1272 |
+
model_inputs.update(
|
1273 |
+
{
|
1274 |
+
"position_ids": position_ids,
|
1275 |
+
"cache_position": cache_position,
|
1276 |
+
"past_key_values": past_key_values,
|
1277 |
+
"use_cache": use_cache,
|
1278 |
+
"attention_mask": attention_mask,
|
1279 |
+
}
|
1280 |
+
)
|
1281 |
+
return model_inputs
|
1282 |
+
|
1283 |
+
def _maybe_initialize_input_ids_for_generation(
|
1284 |
+
self,
|
1285 |
+
inputs: Optional[torch.Tensor] = None,
|
1286 |
+
bos_token_id: Optional[torch.Tensor] = None,
|
1287 |
+
model_kwargs: Optional[dict[str, torch.Tensor]] = None,
|
1288 |
+
) -> torch.LongTensor:
|
1289 |
+
"""
|
1290 |
+
Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model
|
1291 |
+
"""
|
1292 |
+
input_ids = super()._maybe_initialize_input_ids_for_generation(
|
1293 |
+
inputs=inputs, bos_token_id=bos_token_id, model_kwargs=model_kwargs)
|
1294 |
+
if (
|
1295 |
+
"inputs_embeds" in model_kwargs
|
1296 |
+
and input_ids is not None
|
1297 |
+
and input_ids.shape[1] == 0
|
1298 |
+
):
|
1299 |
+
batch_size, input_sequence_length = model_kwargs["inputs_embeds"].shape[:2]
|
1300 |
+
input_ids = torch.zeros((batch_size, input_sequence_length), dtype=torch.long, device=self.device)
|
1301 |
+
return input_ids
|
1302 |
+
|
1303 |
+
def generate(
|
1304 |
+
self,
|
1305 |
+
inputs: Optional[torch.Tensor] = None,
|
1306 |
+
*args,
|
1307 |
+
**kwargs,
|
1308 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
1309 |
+
"""
|
1310 |
+
Patching hf bug that creates wrong cache length if only inputs_embeds are passed to the model
|
1311 |
+
"""
|
1312 |
+
only_passed_inputs_embeds = (
|
1313 |
+
"inputs_embeds" in kwargs and
|
1314 |
+
"input_ids" not in kwargs and
|
1315 |
+
inputs is None
|
1316 |
+
)
|
1317 |
+
if only_passed_inputs_embeds:
|
1318 |
+
input_sequence_length = kwargs["inputs_embeds"].shape[1]
|
1319 |
+
|
1320 |
+
generation_output = super().generate(inputs=inputs, *args, **kwargs)
|
1321 |
+
|
1322 |
+
if only_passed_inputs_embeds and isinstance(generation_output, torch.Tensor):
|
1323 |
+
generation_output = generation_output[:, input_sequence_length:]
|
1324 |
+
|
1325 |
+
return generation_output
|
1326 |
+
|
1327 |
+
|
1328 |
+
@add_start_docstrings(
|
1329 |
+
"""
|
1330 |
+
The DeciLM Model transformer with a sequence classification head on top (linear layer).
|
1331 |
+
|
1332 |
+
[`DeciLMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1333 |
+
(e.g. GPT-2) do.
|
1334 |
+
|
1335 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1336 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1337 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1338 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1339 |
+
each row of the batch).
|
1340 |
+
""",
|
1341 |
+
DECILM_START_DOCSTRING,
|
1342 |
+
)
|
1343 |
+
class DeciLMForSequenceClassification(DeciLMPreTrainedModel):
|
1344 |
+
def __init__(self, config):
|
1345 |
+
super().__init__(config)
|
1346 |
+
self.num_labels = config.num_labels
|
1347 |
+
self.model = DeciLMModel(config)
|
1348 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1349 |
+
|
1350 |
+
# Initialize weights and apply final processing
|
1351 |
+
self.post_init()
|
1352 |
+
|
1353 |
+
def get_input_embeddings(self):
|
1354 |
+
return self.model.embed_tokens
|
1355 |
+
|
1356 |
+
def set_input_embeddings(self, value):
|
1357 |
+
self.model.embed_tokens = value
|
1358 |
+
|
1359 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1360 |
+
def forward(
|
1361 |
+
self,
|
1362 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1363 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1364 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1365 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1366 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1367 |
+
labels: Optional[torch.LongTensor] = None,
|
1368 |
+
use_cache: Optional[bool] = None,
|
1369 |
+
output_attentions: Optional[bool] = None,
|
1370 |
+
output_hidden_states: Optional[bool] = None,
|
1371 |
+
return_dict: Optional[bool] = None,
|
1372 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1373 |
+
r"""
|
1374 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1375 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1376 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1377 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1378 |
+
"""
|
1379 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1380 |
+
|
1381 |
+
transformer_outputs = self.model(
|
1382 |
+
input_ids,
|
1383 |
+
attention_mask=attention_mask,
|
1384 |
+
position_ids=position_ids,
|
1385 |
+
past_key_values=past_key_values,
|
1386 |
+
inputs_embeds=inputs_embeds,
|
1387 |
+
use_cache=use_cache,
|
1388 |
+
output_attentions=output_attentions,
|
1389 |
+
output_hidden_states=output_hidden_states,
|
1390 |
+
return_dict=return_dict,
|
1391 |
+
)
|
1392 |
+
hidden_states = transformer_outputs[0]
|
1393 |
+
logits = self.score(hidden_states)
|
1394 |
+
|
1395 |
+
if input_ids is not None:
|
1396 |
+
batch_size = input_ids.shape[0]
|
1397 |
+
else:
|
1398 |
+
batch_size = inputs_embeds.shape[0]
|
1399 |
+
|
1400 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1401 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1402 |
+
if self.config.pad_token_id is None:
|
1403 |
+
sequence_lengths = -1
|
1404 |
+
else:
|
1405 |
+
if input_ids is not None:
|
1406 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1407 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1408 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1409 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1410 |
+
else:
|
1411 |
+
sequence_lengths = -1
|
1412 |
+
|
1413 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1414 |
+
|
1415 |
+
loss = None
|
1416 |
+
if labels is not None:
|
1417 |
+
labels = labels.to(logits.device)
|
1418 |
+
if self.config.problem_type is None:
|
1419 |
+
if self.num_labels == 1:
|
1420 |
+
self.config.problem_type = "regression"
|
1421 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1422 |
+
self.config.problem_type = "single_label_classification"
|
1423 |
+
else:
|
1424 |
+
self.config.problem_type = "multi_label_classification"
|
1425 |
+
|
1426 |
+
if self.config.problem_type == "regression":
|
1427 |
+
loss_fct = MSELoss()
|
1428 |
+
if self.num_labels == 1:
|
1429 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1430 |
+
else:
|
1431 |
+
loss = loss_fct(pooled_logits, labels)
|
1432 |
+
elif self.config.problem_type == "single_label_classification":
|
1433 |
+
loss_fct = CrossEntropyLoss()
|
1434 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1435 |
+
elif self.config.problem_type == "multi_label_classification":
|
1436 |
+
loss_fct = BCEWithLogitsLoss()
|
1437 |
+
loss = loss_fct(pooled_logits, labels)
|
1438 |
+
if not return_dict:
|
1439 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1440 |
+
return ((loss,) + output) if loss is not None else output
|
1441 |
+
|
1442 |
+
return SequenceClassifierOutputWithPast(
|
1443 |
+
loss=loss,
|
1444 |
+
logits=pooled_logits,
|
1445 |
+
past_key_values=transformer_outputs.past_key_values,
|
1446 |
+
hidden_states=transformer_outputs.hidden_states,
|
1447 |
+
attentions=transformer_outputs.attentions,
|
1448 |
+
)
|
1449 |
+
|
1450 |
+
|
1451 |
+
@add_start_docstrings(
|
1452 |
+
"""
|
1453 |
+
The DeciLM Model transformer with a span classification head on top for extractive question-answering tasks like
|
1454 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1455 |
+
""",
|
1456 |
+
DECILM_START_DOCSTRING,
|
1457 |
+
)
|
1458 |
+
class DeciLMForQuestionAnswering(DeciLMPreTrainedModel):
|
1459 |
+
base_model_prefix = "transformer"
|
1460 |
+
|
1461 |
+
# Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->DeciLM
|
1462 |
+
def __init__(self, config):
|
1463 |
+
super().__init__(config)
|
1464 |
+
self.transformer = DeciLMModel(config)
|
1465 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1466 |
+
|
1467 |
+
# Initialize weights and apply final processing
|
1468 |
+
self.post_init()
|
1469 |
+
|
1470 |
+
def get_input_embeddings(self):
|
1471 |
+
return self.transformer.embed_tokens
|
1472 |
+
|
1473 |
+
def set_input_embeddings(self, value):
|
1474 |
+
self.transformer.embed_tokens = value
|
1475 |
+
|
1476 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1477 |
+
def forward(
|
1478 |
+
self,
|
1479 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1480 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1481 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1482 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1483 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1484 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1485 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1486 |
+
output_attentions: Optional[bool] = None,
|
1487 |
+
output_hidden_states: Optional[bool] = None,
|
1488 |
+
return_dict: Optional[bool] = None,
|
1489 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1490 |
+
r"""
|
1491 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1492 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1493 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1494 |
+
are not taken into account for computing the loss.
|
1495 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1496 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1497 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1498 |
+
are not taken into account for computing the loss.
|
1499 |
+
"""
|
1500 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1501 |
+
|
1502 |
+
outputs = self.transformer(
|
1503 |
+
input_ids,
|
1504 |
+
attention_mask=attention_mask,
|
1505 |
+
position_ids=position_ids,
|
1506 |
+
past_key_values=past_key_values,
|
1507 |
+
inputs_embeds=inputs_embeds,
|
1508 |
+
output_attentions=output_attentions,
|
1509 |
+
output_hidden_states=output_hidden_states,
|
1510 |
+
return_dict=return_dict,
|
1511 |
+
)
|
1512 |
+
|
1513 |
+
sequence_output = outputs[0]
|
1514 |
+
|
1515 |
+
logits = self.qa_outputs(sequence_output)
|
1516 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1517 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1518 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1519 |
+
|
1520 |
+
total_loss = None
|
1521 |
+
if start_positions is not None and end_positions is not None:
|
1522 |
+
# If we are on multi-GPU, split add a dimension
|
1523 |
+
if len(start_positions.size()) > 1:
|
1524 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1525 |
+
if len(end_positions.size()) > 1:
|
1526 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1527 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1528 |
+
ignored_index = start_logits.size(1)
|
1529 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1530 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1531 |
+
|
1532 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1533 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1534 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1535 |
+
total_loss = (start_loss + end_loss) / 2
|
1536 |
+
|
1537 |
+
if not return_dict:
|
1538 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1539 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1540 |
+
|
1541 |
+
return QuestionAnsweringModelOutput(
|
1542 |
+
loss=total_loss,
|
1543 |
+
start_logits=start_logits,
|
1544 |
+
end_logits=end_logits,
|
1545 |
+
hidden_states=outputs.hidden_states,
|
1546 |
+
attentions=outputs.attentions,
|
1547 |
+
)
|
1548 |
+
|
1549 |
+
|
1550 |
+
@add_start_docstrings(
|
1551 |
+
"""
|
1552 |
+
The DeciLM Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
1553 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
1554 |
+
""",
|
1555 |
+
DECILM_START_DOCSTRING,
|
1556 |
+
)
|
1557 |
+
class DeciLMForTokenClassification(DeciLMPreTrainedModel):
|
1558 |
+
def __init__(self, config):
|
1559 |
+
super().__init__(config)
|
1560 |
+
self.num_labels = config.num_labels
|
1561 |
+
self.model = DeciLMModel(config)
|
1562 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
1563 |
+
classifier_dropout = config.classifier_dropout
|
1564 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
1565 |
+
classifier_dropout = config.hidden_dropout
|
1566 |
+
else:
|
1567 |
+
classifier_dropout = 0.1
|
1568 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1569 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
1570 |
+
|
1571 |
+
# Initialize weights and apply final processing
|
1572 |
+
self.post_init()
|
1573 |
+
|
1574 |
+
def get_input_embeddings(self):
|
1575 |
+
return self.model.embed_tokens
|
1576 |
+
|
1577 |
+
def set_input_embeddings(self, value):
|
1578 |
+
self.model.embed_tokens = value
|
1579 |
+
|
1580 |
+
@add_start_docstrings_to_model_forward(DECILM_INPUTS_DOCSTRING)
|
1581 |
+
def forward(
|
1582 |
+
self,
|
1583 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1584 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1585 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1586 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1587 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1588 |
+
labels: Optional[torch.LongTensor] = None,
|
1589 |
+
use_cache: Optional[bool] = None,
|
1590 |
+
output_attentions: Optional[bool] = None,
|
1591 |
+
output_hidden_states: Optional[bool] = None,
|
1592 |
+
return_dict: Optional[bool] = None,
|
1593 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1594 |
+
r"""
|
1595 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1596 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1597 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1598 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1599 |
+
"""
|
1600 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1601 |
+
|
1602 |
+
outputs = self.model(
|
1603 |
+
input_ids,
|
1604 |
+
attention_mask=attention_mask,
|
1605 |
+
position_ids=position_ids,
|
1606 |
+
past_key_values=past_key_values,
|
1607 |
+
inputs_embeds=inputs_embeds,
|
1608 |
+
use_cache=use_cache,
|
1609 |
+
output_attentions=output_attentions,
|
1610 |
+
output_hidden_states=output_hidden_states,
|
1611 |
+
return_dict=return_dict,
|
1612 |
+
)
|
1613 |
+
sequence_output = outputs[0]
|
1614 |
+
sequence_output = self.dropout(sequence_output)
|
1615 |
+
logits = self.score(sequence_output)
|
1616 |
+
|
1617 |
+
loss = None
|
1618 |
+
if labels is not None:
|
1619 |
+
loss_fct = CrossEntropyLoss()
|
1620 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1621 |
+
|
1622 |
+
if not return_dict:
|
1623 |
+
output = (logits,) + outputs[2:]
|
1624 |
+
return ((loss,) + output) if loss is not None else output
|
1625 |
+
|
1626 |
+
return TokenClassifierOutput(
|
1627 |
+
loss=loss,
|
1628 |
+
logits=logits,
|
1629 |
+
hidden_states=outputs.hidden_states,
|
1630 |
+
attentions=outputs.attentions,
|
1631 |
+
)
|
1632 |
+
|
1633 |
+
|
1634 |
+
########################################################################
|
1635 |
+
# DeciLM-specific code
|
1636 |
+
########################################################################
|
1637 |
+
|
1638 |
+
|
1639 |
+
def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
|
1640 |
+
# DeciLM-specific code
|
1641 |
+
intermediate_size = int(2 * ffn_mult * n_embd / 3)
|
1642 |
+
return _find_multiple(intermediate_size, 256)
|
1643 |
+
|
1644 |
+
|
1645 |
+
def _find_multiple(n: int, k: int) -> int:
|
1646 |
+
# DeciLM-specific code
|
1647 |
+
if n % k == 0:
|
1648 |
+
return n
|
1649 |
+
return n + k - (n % k)
|
1650 |
+
|
1651 |
+
|
1652 |
+
class DeciLMLinearMLP(nn.Module):
|
1653 |
+
# DeciLM-specific code
|
1654 |
+
def __init__(self,
|
1655 |
+
config: DeciLMConfig,
|
1656 |
+
):
|
1657 |
+
super().__init__()
|
1658 |
+
self.linear_mlp = nn.Linear(in_features=config.hidden_size,
|
1659 |
+
out_features=config.hidden_size,
|
1660 |
+
bias=False)
|
1661 |
+
|
1662 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1663 |
+
return self.linear_mlp.forward(x)
|
1664 |
+
|
1665 |
+
|
1666 |
+
class DeciLMLinearAttention(nn.Module):
|
1667 |
+
# DeciLM-specific code
|
1668 |
+
def __init__(self,
|
1669 |
+
config: DeciLMConfig,
|
1670 |
+
):
|
1671 |
+
super().__init__()
|
1672 |
+
self.linear_attn = nn.Linear(in_features=config.hidden_size,
|
1673 |
+
out_features=config.hidden_size,
|
1674 |
+
bias=False)
|
1675 |
+
|
1676 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1677 |
+
return self.linear_attn.forward(x)
|
1678 |
+
|
1679 |
+
|
1680 |
+
def sparsity_backward_hook(*args, **kwargs):
|
1681 |
+
raise NotImplementedError("No support for sparsity when training HF DeciLM (inference is ok though)")
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
}
|
16 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
|
3 |
+
size 17209920
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{{- bos_token }}{%- if messages[0]['role'] == 'system' %}{%- set system_message = messages[0]['content']|trim %}{%- set messages = messages[1:] %}{%- else %}{%- set system_message = \"\" %}{%- endif %}{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}{{- system_message }}{{- \"<|eot_id|>\" }}{%- for message in messages %}{%- if message['role'] == 'assistant' and '</think>' in message['content'] %}{%- set content = message['content'].split('</think>')[-1].lstrip() %}{%- else %}{%- set content = message['content'] %}{%- endif %}{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' + content | trim + '<|eot_id|>' }}{%- endfor %}{%- if add_generation_prompt %}{{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}{%- endif %}",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|eot_id|>",
|
2056 |
+
"extra_special_tokens": {},
|
2057 |
+
"model_input_names": [
|
2058 |
+
"input_ids",
|
2059 |
+
"attention_mask"
|
2060 |
+
],
|
2061 |
+
"model_max_length": 131072,
|
2062 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2063 |
+
}
|
transformers_4_44_2__activations.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from packaging import version
|
20 |
+
from torch import Tensor, nn
|
21 |
+
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class PytorchGELUTanh(nn.Module):
|
29 |
+
"""
|
30 |
+
A fast C implementation of the tanh approximation of the GeLU activation function. See
|
31 |
+
https://arxiv.org/abs/1606.08415.
|
32 |
+
|
33 |
+
This implementation is equivalent to NewGELU and FastGELU but much faster. However, it is not an exact numerical
|
34 |
+
match due to rounding errors.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self):
|
38 |
+
super().__init__()
|
39 |
+
if version.parse(torch.__version__) < version.parse("1.12.0"):
|
40 |
+
raise ImportError(
|
41 |
+
f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
|
42 |
+
"PytorchGELUTanh. Please upgrade torch."
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, input: Tensor) -> Tensor:
|
46 |
+
return nn.functional.gelu(input, approximate="tanh")
|
47 |
+
|
48 |
+
|
49 |
+
class NewGELUActivation(nn.Module):
|
50 |
+
"""
|
51 |
+
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
|
52 |
+
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
53 |
+
"""
|
54 |
+
|
55 |
+
def forward(self, input: Tensor) -> Tensor:
|
56 |
+
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
|
57 |
+
|
58 |
+
|
59 |
+
class GELUActivation(nn.Module):
|
60 |
+
"""
|
61 |
+
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
|
62 |
+
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
63 |
+
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
|
64 |
+
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self, use_gelu_python: bool = False):
|
68 |
+
super().__init__()
|
69 |
+
if use_gelu_python:
|
70 |
+
self.act = self._gelu_python
|
71 |
+
else:
|
72 |
+
self.act = nn.functional.gelu
|
73 |
+
|
74 |
+
def _gelu_python(self, input: Tensor) -> Tensor:
|
75 |
+
return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))
|
76 |
+
|
77 |
+
def forward(self, input: Tensor) -> Tensor:
|
78 |
+
return self.act(input)
|
79 |
+
|
80 |
+
|
81 |
+
class FastGELUActivation(nn.Module):
|
82 |
+
"""
|
83 |
+
Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
|
84 |
+
"""
|
85 |
+
|
86 |
+
def forward(self, input: Tensor) -> Tensor:
|
87 |
+
return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))
|
88 |
+
|
89 |
+
|
90 |
+
class QuickGELUActivation(nn.Module):
|
91 |
+
"""
|
92 |
+
Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
|
93 |
+
"""
|
94 |
+
|
95 |
+
def forward(self, input: Tensor) -> Tensor:
|
96 |
+
return input * torch.sigmoid(1.702 * input)
|
97 |
+
|
98 |
+
|
99 |
+
class ClippedGELUActivation(nn.Module):
|
100 |
+
"""
|
101 |
+
Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
|
102 |
+
it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
|
103 |
+
https://arxiv.org/abs/2004.09602.
|
104 |
+
|
105 |
+
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
106 |
+
initially created.
|
107 |
+
|
108 |
+
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
109 |
+
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
|
110 |
+
"""
|
111 |
+
|
112 |
+
def __init__(self, min: float, max: float):
|
113 |
+
if min > max:
|
114 |
+
raise ValueError(f"min should be < max (got min: {min}, max: {max})")
|
115 |
+
|
116 |
+
super().__init__()
|
117 |
+
self.min = min
|
118 |
+
self.max = max
|
119 |
+
|
120 |
+
def forward(self, x: Tensor) -> Tensor:
|
121 |
+
return torch.clip(gelu(x), self.min, self.max)
|
122 |
+
|
123 |
+
|
124 |
+
class AccurateGELUActivation(nn.Module):
|
125 |
+
"""
|
126 |
+
Applies GELU approximation that is faster than default and more accurate than QuickGELU. See:
|
127 |
+
https://github.com/hendrycks/GELUs
|
128 |
+
|
129 |
+
Implemented along with MEGA (Moving Average Equipped Gated Attention)
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self):
|
133 |
+
super().__init__()
|
134 |
+
self.precomputed_constant = math.sqrt(2 / math.pi)
|
135 |
+
|
136 |
+
def forward(self, input: Tensor) -> Tensor:
|
137 |
+
return 0.5 * input * (1 + torch.tanh(self.precomputed_constant * (input + 0.044715 * torch.pow(input, 3))))
|
138 |
+
|
139 |
+
|
140 |
+
class MishActivation(nn.Module):
|
141 |
+
"""
|
142 |
+
See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
|
143 |
+
visit the official repository for the paper: https://github.com/digantamisra98/Mish
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self):
|
147 |
+
super().__init__()
|
148 |
+
if version.parse(torch.__version__) < version.parse("1.9.0"):
|
149 |
+
self.act = self._mish_python
|
150 |
+
else:
|
151 |
+
self.act = nn.functional.mish
|
152 |
+
|
153 |
+
def _mish_python(self, input: Tensor) -> Tensor:
|
154 |
+
return input * torch.tanh(nn.functional.softplus(input))
|
155 |
+
|
156 |
+
def forward(self, input: Tensor) -> Tensor:
|
157 |
+
return self.act(input)
|
158 |
+
|
159 |
+
|
160 |
+
class LinearActivation(nn.Module):
|
161 |
+
"""
|
162 |
+
Applies the linear activation function, i.e. forwarding input directly to output.
|
163 |
+
"""
|
164 |
+
|
165 |
+
def forward(self, input: Tensor) -> Tensor:
|
166 |
+
return input
|
167 |
+
|
168 |
+
|
169 |
+
class LaplaceActivation(nn.Module):
|
170 |
+
"""
|
171 |
+
Applies elementwise activation based on Laplace function, introduced in MEGA as an attention activation. See
|
172 |
+
https://arxiv.org/abs/2209.10655
|
173 |
+
|
174 |
+
Inspired by squared relu, but with bounded range and gradient for better stability
|
175 |
+
"""
|
176 |
+
|
177 |
+
def forward(self, input, mu=0.707107, sigma=0.282095):
|
178 |
+
input = (input - mu).div(sigma * math.sqrt(2.0))
|
179 |
+
return 0.5 * (1.0 + torch.erf(input))
|
180 |
+
|
181 |
+
|
182 |
+
class ReLUSquaredActivation(nn.Module):
|
183 |
+
"""
|
184 |
+
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
|
185 |
+
"""
|
186 |
+
|
187 |
+
def forward(self, input):
|
188 |
+
relu_applied = nn.functional.relu(input)
|
189 |
+
squared = torch.square(relu_applied)
|
190 |
+
return squared
|
191 |
+
|
192 |
+
|
193 |
+
class ClassInstantier(OrderedDict):
|
194 |
+
def __getitem__(self, key):
|
195 |
+
content = super().__getitem__(key)
|
196 |
+
cls, kwargs = content if isinstance(content, tuple) else (content, {})
|
197 |
+
return cls(**kwargs)
|
198 |
+
|
199 |
+
|
200 |
+
ACT2CLS = {
|
201 |
+
"gelu": GELUActivation,
|
202 |
+
"gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
|
203 |
+
"gelu_fast": FastGELUActivation,
|
204 |
+
"gelu_new": NewGELUActivation,
|
205 |
+
"gelu_python": (GELUActivation, {"use_gelu_python": True}),
|
206 |
+
"gelu_pytorch_tanh": PytorchGELUTanh,
|
207 |
+
"gelu_accurate": AccurateGELUActivation,
|
208 |
+
"laplace": LaplaceActivation,
|
209 |
+
"leaky_relu": nn.LeakyReLU,
|
210 |
+
"linear": LinearActivation,
|
211 |
+
"mish": MishActivation,
|
212 |
+
"quick_gelu": QuickGELUActivation,
|
213 |
+
"relu": nn.ReLU,
|
214 |
+
"relu2": ReLUSquaredActivation,
|
215 |
+
"relu6": nn.ReLU6,
|
216 |
+
"sigmoid": nn.Sigmoid,
|
217 |
+
"silu": nn.SiLU,
|
218 |
+
"swish": nn.SiLU,
|
219 |
+
"tanh": nn.Tanh,
|
220 |
+
}
|
221 |
+
ACT2FN = ClassInstantier(ACT2CLS)
|
222 |
+
|
223 |
+
|
224 |
+
def get_activation(activation_string):
|
225 |
+
if activation_string in ACT2FN:
|
226 |
+
return ACT2FN[activation_string]
|
227 |
+
else:
|
228 |
+
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
|
229 |
+
|
230 |
+
|
231 |
+
# For backwards compatibility with: from activations import gelu_python
|
232 |
+
gelu_python = get_activation("gelu_python")
|
233 |
+
gelu_new = get_activation("gelu_new")
|
234 |
+
gelu = get_activation("gelu")
|
235 |
+
gelu_fast = get_activation("gelu_fast")
|
236 |
+
quick_gelu = get_activation("quick_gelu")
|
237 |
+
silu = get_activation("silu")
|
238 |
+
mish = get_activation("mish")
|
239 |
+
linear_act = get_activation("linear")
|
transformers_4_44_2__cache_utils.py
ADDED
@@ -0,0 +1,1347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import importlib.metadata
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from packaging import version
|
10 |
+
|
11 |
+
from transformers.configuration_utils import PretrainedConfig
|
12 |
+
from transformers.utils import is_torchdynamo_compiling, logging
|
13 |
+
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
class Cache(torch.nn.Module):
|
19 |
+
"""
|
20 |
+
Base, abstract class for all caches. The actual data structure is specific to each subclass.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self):
|
24 |
+
super().__init__()
|
25 |
+
|
26 |
+
def update(
|
27 |
+
self,
|
28 |
+
key_states: torch.Tensor,
|
29 |
+
value_states: torch.Tensor,
|
30 |
+
layer_idx: int,
|
31 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
32 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
33 |
+
"""
|
34 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
35 |
+
|
36 |
+
Parameters:
|
37 |
+
key_states (`torch.Tensor`):
|
38 |
+
The new key states to cache.
|
39 |
+
value_states (`torch.Tensor`):
|
40 |
+
The new value states to cache.
|
41 |
+
layer_idx (`int`):
|
42 |
+
The index of the layer to cache the states for.
|
43 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
44 |
+
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
|
45 |
+
cache to be created.
|
46 |
+
|
47 |
+
Return:
|
48 |
+
A tuple containing the updated key and value states.
|
49 |
+
"""
|
50 |
+
raise NotImplementedError("Make sure to implement `update` in a subclass.")
|
51 |
+
|
52 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
53 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
54 |
+
# TODO: deprecate this function in favor of `cache_position`
|
55 |
+
raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
|
56 |
+
|
57 |
+
def get_max_length(self) -> Optional[int]:
|
58 |
+
"""Returns the maximum sequence length of the cached states, if there is any."""
|
59 |
+
raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
|
60 |
+
|
61 |
+
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
62 |
+
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
63 |
+
# Cache without size limit -> all cache is usable
|
64 |
+
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
65 |
+
# length, we will need to evict part of the cache (and thus not all cache is usable)
|
66 |
+
max_length = self.get_max_length()
|
67 |
+
previous_seq_length = self.get_seq_length(layer_idx)
|
68 |
+
if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
69 |
+
return max_length - new_seq_length
|
70 |
+
return previous_seq_length
|
71 |
+
|
72 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
73 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
74 |
+
for layer_idx in range(len(self.key_cache)):
|
75 |
+
device = self.key_cache[layer_idx].device
|
76 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
77 |
+
device = self.value_cache[layer_idx].device
|
78 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
79 |
+
|
80 |
+
@property
|
81 |
+
def seen_tokens(self):
|
82 |
+
logger.warning_once(
|
83 |
+
"The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
|
84 |
+
"model input instead."
|
85 |
+
)
|
86 |
+
if hasattr(self, "_seen_tokens"):
|
87 |
+
return self._seen_tokens
|
88 |
+
else:
|
89 |
+
return None
|
90 |
+
|
91 |
+
|
92 |
+
@dataclass
|
93 |
+
class CacheConfig:
|
94 |
+
"""
|
95 |
+
Base class for cache configs
|
96 |
+
"""
|
97 |
+
|
98 |
+
cache_implementation: None
|
99 |
+
|
100 |
+
@classmethod
|
101 |
+
def from_dict(cls, config_dict, **kwargs):
|
102 |
+
"""
|
103 |
+
Constructs a CacheConfig instance from a dictionary of parameters.
|
104 |
+
Args:
|
105 |
+
config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
|
106 |
+
**kwargs: Additional keyword arguments to override dictionary values.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
CacheConfig: Instance of CacheConfig constructed from the dictionary.
|
110 |
+
"""
|
111 |
+
config = cls(**config_dict)
|
112 |
+
to_remove = []
|
113 |
+
for key, value in kwargs.items():
|
114 |
+
if hasattr(config, key):
|
115 |
+
setattr(config, key, value)
|
116 |
+
to_remove.append(key)
|
117 |
+
for key in to_remove:
|
118 |
+
kwargs.pop(key, None)
|
119 |
+
return config
|
120 |
+
|
121 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_json_file
|
122 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
123 |
+
"""
|
124 |
+
Save this instance to a JSON file.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
json_file_path (`str` or `os.PathLike`):
|
128 |
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
129 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
130 |
+
If set to `True`, only the difference between the config instance and the default
|
131 |
+
`QuantizationConfig()` is serialized to JSON file.
|
132 |
+
"""
|
133 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
134 |
+
config_dict = self.to_dict()
|
135 |
+
json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
136 |
+
|
137 |
+
writer.write(json_string)
|
138 |
+
|
139 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_dict
|
140 |
+
def to_dict(self) -> Dict[str, Any]:
|
141 |
+
"""
|
142 |
+
Serializes this instance to a Python dictionary. Returns:
|
143 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
144 |
+
"""
|
145 |
+
return copy.deepcopy(self.__dict__)
|
146 |
+
|
147 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__iter__
|
148 |
+
def __iter__(self):
|
149 |
+
"""allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
|
150 |
+
for attr, value in copy.deepcopy(self.__dict__).items():
|
151 |
+
yield attr, value
|
152 |
+
|
153 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__repr__
|
154 |
+
def __repr__(self):
|
155 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
156 |
+
|
157 |
+
def to_json_string(self):
|
158 |
+
"""
|
159 |
+
Serializes this instance to a JSON formatted string.
|
160 |
+
Returns:
|
161 |
+
str: JSON formatted string representing the configuration instance.
|
162 |
+
"""
|
163 |
+
return json.dumps(self.__dict__, indent=2) + "\n"
|
164 |
+
|
165 |
+
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.update
|
166 |
+
def update(self, **kwargs):
|
167 |
+
"""
|
168 |
+
Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes,
|
169 |
+
returning all the unused kwargs.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
kwargs (`Dict[str, Any]`):
|
173 |
+
Dictionary of attributes to tentatively update this class.
|
174 |
+
|
175 |
+
Returns:
|
176 |
+
`Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
|
177 |
+
"""
|
178 |
+
to_remove = []
|
179 |
+
for key, value in kwargs.items():
|
180 |
+
if hasattr(self, key):
|
181 |
+
setattr(self, key, value)
|
182 |
+
to_remove.append(key)
|
183 |
+
|
184 |
+
# Remove all the attributes that were updated, without modifying the input dict
|
185 |
+
unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
|
186 |
+
return unused_kwargs
|
187 |
+
|
188 |
+
|
189 |
+
class DynamicCache(Cache):
|
190 |
+
"""
|
191 |
+
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
192 |
+
|
193 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
194 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
195 |
+
|
196 |
+
Example:
|
197 |
+
|
198 |
+
```python
|
199 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
|
200 |
+
|
201 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
202 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
203 |
+
|
204 |
+
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
|
205 |
+
|
206 |
+
>>> # Prepare a cache class and pass it to model's forward
|
207 |
+
>>> past_key_values = DynamicCache()
|
208 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
209 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
210 |
+
```
|
211 |
+
"""
|
212 |
+
|
213 |
+
def __init__(self) -> None:
|
214 |
+
super().__init__()
|
215 |
+
self.key_cache: List[torch.Tensor] = []
|
216 |
+
self.value_cache: List[torch.Tensor] = []
|
217 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
218 |
+
|
219 |
+
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
220 |
+
"""
|
221 |
+
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
222 |
+
sequence length.
|
223 |
+
"""
|
224 |
+
if layer_idx < len(self):
|
225 |
+
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
226 |
+
else:
|
227 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
228 |
+
|
229 |
+
def __iter__(self):
|
230 |
+
"""
|
231 |
+
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
232 |
+
keys and values
|
233 |
+
"""
|
234 |
+
for layer_idx in range(len(self)):
|
235 |
+
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
236 |
+
|
237 |
+
def __len__(self):
|
238 |
+
"""
|
239 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
240 |
+
to the number of layers in the model.
|
241 |
+
"""
|
242 |
+
return len(self.key_cache)
|
243 |
+
|
244 |
+
def update(
|
245 |
+
self,
|
246 |
+
key_states: torch.Tensor,
|
247 |
+
value_states: torch.Tensor,
|
248 |
+
layer_idx: int,
|
249 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
250 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
251 |
+
"""
|
252 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
253 |
+
|
254 |
+
Parameters:
|
255 |
+
key_states (`torch.Tensor`):
|
256 |
+
The new key states to cache.
|
257 |
+
value_states (`torch.Tensor`):
|
258 |
+
The new value states to cache.
|
259 |
+
layer_idx (`int`):
|
260 |
+
The index of the layer to cache the states for.
|
261 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
262 |
+
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
263 |
+
|
264 |
+
Return:
|
265 |
+
A tuple containing the updated key and value states.
|
266 |
+
"""
|
267 |
+
# Update the number of seen tokens
|
268 |
+
if layer_idx == 0:
|
269 |
+
self._seen_tokens += key_states.shape[-2]
|
270 |
+
|
271 |
+
# Update the cache
|
272 |
+
if len(self.key_cache) <= layer_idx:
|
273 |
+
self.key_cache.append(key_states)
|
274 |
+
self.value_cache.append(value_states)
|
275 |
+
else:
|
276 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
277 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
278 |
+
|
279 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
280 |
+
|
281 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
282 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
283 |
+
# TODO: deprecate this function in favor of `cache_position`
|
284 |
+
if len(self.key_cache) <= layer_idx:
|
285 |
+
return 0
|
286 |
+
return self.key_cache[layer_idx].shape[-2]
|
287 |
+
|
288 |
+
def get_max_length(self) -> Optional[int]:
|
289 |
+
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
290 |
+
return None
|
291 |
+
|
292 |
+
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
293 |
+
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
|
294 |
+
backward compatibility."""
|
295 |
+
legacy_cache = ()
|
296 |
+
for layer_idx in range(len(self)):
|
297 |
+
legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
|
298 |
+
return legacy_cache
|
299 |
+
|
300 |
+
@classmethod
|
301 |
+
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
302 |
+
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
|
303 |
+
backward compatibility."""
|
304 |
+
cache = cls()
|
305 |
+
if past_key_values is not None:
|
306 |
+
for layer_idx in range(len(past_key_values)):
|
307 |
+
key_states, value_states = past_key_values[layer_idx]
|
308 |
+
cache.update(key_states, value_states, layer_idx)
|
309 |
+
return cache
|
310 |
+
|
311 |
+
def crop(self, max_length: int):
|
312 |
+
"""Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
|
313 |
+
negative to remove `max_length` tokens. This is used in assisted decoding and contrastive search."""
|
314 |
+
# In case it is negative
|
315 |
+
if max_length < 0:
|
316 |
+
max_length = self.get_seq_length() - abs(max_length)
|
317 |
+
|
318 |
+
if self.get_seq_length() <= max_length:
|
319 |
+
return
|
320 |
+
|
321 |
+
self._seen_tokens = max_length
|
322 |
+
for idx in range(len(self.key_cache)):
|
323 |
+
self.key_cache[idx] = self.key_cache[idx][..., :max_length, :]
|
324 |
+
self.value_cache[idx] = self.value_cache[idx][..., :max_length, :]
|
325 |
+
|
326 |
+
def batch_split(self, full_batch_size: int, split_size: int) -> List["DynamicCache"]:
|
327 |
+
"""Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
|
328 |
+
`_split_model_inputs()` in `generation.utils`"""
|
329 |
+
out = []
|
330 |
+
for i in range(0, full_batch_size, split_size):
|
331 |
+
current_split = DynamicCache()
|
332 |
+
current_split._seen_tokens = self._seen_tokens
|
333 |
+
current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache]
|
334 |
+
current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache]
|
335 |
+
out.append(current_split)
|
336 |
+
return out
|
337 |
+
|
338 |
+
@classmethod
|
339 |
+
def from_batch_splits(cls, splits: List["DynamicCache"]) -> "DynamicCache":
|
340 |
+
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
|
341 |
+
`generation.utils`"""
|
342 |
+
cache = cls()
|
343 |
+
for idx in range(len(splits[0])):
|
344 |
+
layer_keys = torch.cat([current.key_cache[idx] for current in splits], dim=0)
|
345 |
+
layer_values = torch.cat([current.value_cache[idx] for current in splits], dim=0)
|
346 |
+
cache.update(layer_keys, layer_values, idx)
|
347 |
+
return cache
|
348 |
+
|
349 |
+
def batch_repeat_interleave(self, repeats: int):
|
350 |
+
"""Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
|
351 |
+
for layer_idx in range(len(self)):
|
352 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
|
353 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)
|
354 |
+
|
355 |
+
def batch_select_indices(self, indices: torch.Tensor):
|
356 |
+
"""Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
|
357 |
+
for layer_idx in range(len(self)):
|
358 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
|
359 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]
|
360 |
+
|
361 |
+
|
362 |
+
class OffloadedCache(DynamicCache):
|
363 |
+
"""
|
364 |
+
A drop-in replacement for DynamicCache that conserves GPU memory at the expense of more CPU memory.
|
365 |
+
Useful for generating from models with very long context.
|
366 |
+
|
367 |
+
In addition to the default CUDA stream, where all forward() computations happen,
|
368 |
+
this class uses another stream, the prefetch stream, which it creates itself.
|
369 |
+
Since scheduling of operations on separate streams happens independently, this class uses
|
370 |
+
the prefetch stream to asynchronously prefetch the KV cache of layer k+1 when layer k is executing.
|
371 |
+
The movement of the layer k-1 cache to the CPU is handled by the default stream as a simple way to
|
372 |
+
ensure the eviction is scheduled after all computations on that cache are finished.
|
373 |
+
"""
|
374 |
+
|
375 |
+
def __init__(self) -> None:
|
376 |
+
if not torch.cuda.is_available():
|
377 |
+
raise RuntimeError("OffloadedCache can only be used with a GPU")
|
378 |
+
super().__init__()
|
379 |
+
self.original_device = []
|
380 |
+
self.prefetch_stream = torch.cuda.Stream()
|
381 |
+
self.beam_idx = None # used to delay beam search operations
|
382 |
+
|
383 |
+
def prefetch_layer(self, layer_idx: int):
|
384 |
+
"Starts prefetching the next layer cache"
|
385 |
+
if layer_idx < len(self):
|
386 |
+
with torch.cuda.stream(self.prefetch_stream):
|
387 |
+
# Prefetch next layer tensors to GPU
|
388 |
+
device = self.original_device[layer_idx]
|
389 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True)
|
390 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True)
|
391 |
+
|
392 |
+
def evict_previous_layer(self, layer_idx: int):
|
393 |
+
"Moves the previous layer cache to the CPU"
|
394 |
+
if len(self) > 2:
|
395 |
+
# We do it on the default stream so it occurs after all earlier computations on these tensors are done
|
396 |
+
prev_layer_idx = (layer_idx - 1) % len(self)
|
397 |
+
self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True)
|
398 |
+
self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True)
|
399 |
+
|
400 |
+
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
401 |
+
"Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer."
|
402 |
+
if layer_idx < len(self):
|
403 |
+
# Evict the previous layer if necessary
|
404 |
+
torch.cuda.current_stream().synchronize()
|
405 |
+
self.evict_previous_layer(layer_idx)
|
406 |
+
# Load current layer cache to its original device if not already there
|
407 |
+
original_device = self.original_device[layer_idx]
|
408 |
+
self.prefetch_stream.synchronize()
|
409 |
+
key_tensor = self.key_cache[layer_idx]
|
410 |
+
value_tensor = self.value_cache[layer_idx]
|
411 |
+
# Now deal with beam search ops which were delayed
|
412 |
+
if self.beam_idx is not None:
|
413 |
+
self.beam_idx = self.beam_idx.to(original_device)
|
414 |
+
key_tensor = key_tensor.index_select(0, self.beam_idx)
|
415 |
+
value_tensor = value_tensor.index_select(0, self.beam_idx)
|
416 |
+
# Prefetch the next layer
|
417 |
+
self.prefetch_layer((layer_idx + 1) % len(self))
|
418 |
+
return (key_tensor, value_tensor)
|
419 |
+
else:
|
420 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
421 |
+
|
422 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
423 |
+
"""Saves the beam indices and reorders the cache when the tensor is back to its device."""
|
424 |
+
# We delay this operation until the tensors are back to their original
|
425 |
+
# device because performing torch.index_select on the CPU is very slow
|
426 |
+
del self.beam_idx
|
427 |
+
self.beam_idx = beam_idx.clone()
|
428 |
+
|
429 |
+
def update(
|
430 |
+
self,
|
431 |
+
key_states: torch.Tensor,
|
432 |
+
value_states: torch.Tensor,
|
433 |
+
layer_idx: int,
|
434 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
435 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
436 |
+
"""
|
437 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
438 |
+
Parameters:
|
439 |
+
key_states (`torch.Tensor`):
|
440 |
+
The new key states to cache.
|
441 |
+
value_states (`torch.Tensor`):
|
442 |
+
The new value states to cache.
|
443 |
+
layer_idx (`int`):
|
444 |
+
The index of the layer to cache the states for.
|
445 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
446 |
+
Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`.
|
447 |
+
Return:
|
448 |
+
A tuple containing the updated key and value states.
|
449 |
+
"""
|
450 |
+
# Update the number of seen tokens
|
451 |
+
if layer_idx == 0:
|
452 |
+
self._seen_tokens += key_states.shape[-2]
|
453 |
+
|
454 |
+
# Update the cache
|
455 |
+
if len(self.key_cache) <= layer_idx:
|
456 |
+
self.key_cache.append(key_states)
|
457 |
+
self.value_cache.append(value_states)
|
458 |
+
self.original_device.append(key_states.device)
|
459 |
+
self.evict_previous_layer(layer_idx)
|
460 |
+
else:
|
461 |
+
key_tensor, value_tensor = self[layer_idx]
|
462 |
+
self.key_cache[layer_idx] = torch.cat([key_tensor, key_states], dim=-2)
|
463 |
+
self.value_cache[layer_idx] = torch.cat([value_tensor, value_states], dim=-2)
|
464 |
+
|
465 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
466 |
+
|
467 |
+
# According to https://docs.python.org/3/library/exceptions.html#NotImplementedError
|
468 |
+
# if a method is not supposed to be supported in a subclass we should set it to None
|
469 |
+
from_legacy_cache = None
|
470 |
+
|
471 |
+
to_legacy_cache = None
|
472 |
+
|
473 |
+
|
474 |
+
class SinkCache(Cache):
|
475 |
+
"""
|
476 |
+
A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
|
477 |
+
generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
|
478 |
+
tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
|
479 |
+
|
480 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
481 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
482 |
+
|
483 |
+
Parameters:
|
484 |
+
window_length (`int`):
|
485 |
+
The length of the context window.
|
486 |
+
num_sink_tokens (`int`):
|
487 |
+
The number of sink tokens. See the original paper for more information.
|
488 |
+
|
489 |
+
Example:
|
490 |
+
|
491 |
+
```python
|
492 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache
|
493 |
+
|
494 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
495 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
496 |
+
|
497 |
+
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
|
498 |
+
|
499 |
+
>>> # Prepare a cache class and pass it to model's forward
|
500 |
+
>>> past_key_values = SinkCache(window_length=256, num_sink_tokens=4)
|
501 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
502 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
503 |
+
```
|
504 |
+
"""
|
505 |
+
|
506 |
+
def __init__(self, window_length: int, num_sink_tokens: int) -> None:
|
507 |
+
super().__init__()
|
508 |
+
self.key_cache: List[torch.Tensor] = []
|
509 |
+
self.value_cache: List[torch.Tensor] = []
|
510 |
+
self.window_length = window_length
|
511 |
+
self.num_sink_tokens = num_sink_tokens
|
512 |
+
self.cos_sin_rerotation_cache = {}
|
513 |
+
self._cos_cache = None
|
514 |
+
self._sin_cache = None
|
515 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
516 |
+
|
517 |
+
@staticmethod
|
518 |
+
def _rotate_half(x):
|
519 |
+
x1 = x[..., : x.shape[-1] // 2]
|
520 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
521 |
+
return torch.cat((-x2, x1), dim=-1)
|
522 |
+
|
523 |
+
def _apply_key_rotary_pos_emb(
|
524 |
+
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
525 |
+
) -> torch.Tensor:
|
526 |
+
rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
|
527 |
+
return rotated_key_states
|
528 |
+
|
529 |
+
def _get_rerotation_cos_sin(
|
530 |
+
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
531 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
532 |
+
if key_states.shape[-2] not in self.cos_sin_rerotation_cache:
|
533 |
+
# Upcast to float32 temporarily for better accuracy
|
534 |
+
cos = cos.to(torch.float32)
|
535 |
+
sin = sin.to(torch.float32)
|
536 |
+
|
537 |
+
# Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
|
538 |
+
original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
|
539 |
+
shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
|
540 |
+
original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
|
541 |
+
shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
|
542 |
+
rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
|
543 |
+
rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
|
544 |
+
|
545 |
+
self.cos_sin_rerotation_cache[key_states.shape[-2]] = (
|
546 |
+
rerotation_cos.to(key_states.dtype).unsqueeze(0),
|
547 |
+
rerotation_sin.to(key_states.dtype).unsqueeze(0),
|
548 |
+
)
|
549 |
+
return self.cos_sin_rerotation_cache[key_states.shape[-2]]
|
550 |
+
|
551 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
552 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
553 |
+
# TODO: deprecate this function in favor of `cache_position`
|
554 |
+
# Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
|
555 |
+
if len(self.key_cache) <= layer_idx:
|
556 |
+
return 0
|
557 |
+
return self.key_cache[layer_idx].shape[-2]
|
558 |
+
|
559 |
+
def get_max_length(self) -> Optional[int]:
|
560 |
+
"""Returns the maximum sequence length of the cached states."""
|
561 |
+
return self.window_length
|
562 |
+
|
563 |
+
def update(
|
564 |
+
self,
|
565 |
+
key_states: torch.Tensor,
|
566 |
+
value_states: torch.Tensor,
|
567 |
+
layer_idx: int,
|
568 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
569 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
570 |
+
"""
|
571 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
572 |
+
|
573 |
+
Parameters:
|
574 |
+
key_states (`torch.Tensor`):
|
575 |
+
The new key states to cache.
|
576 |
+
value_states (`torch.Tensor`):
|
577 |
+
The new value states to cache.
|
578 |
+
layer_idx (`int`):
|
579 |
+
The index of the layer to cache the states for.
|
580 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
581 |
+
Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
|
582 |
+
`cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
|
583 |
+
rotation as the tokens are shifted.
|
584 |
+
|
585 |
+
Return:
|
586 |
+
A tuple containing the updated key and value states.
|
587 |
+
"""
|
588 |
+
# Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
|
589 |
+
# with partially rotated position embeddings, like Phi or Persimmon.
|
590 |
+
sin = cache_kwargs.get("sin")
|
591 |
+
cos = cache_kwargs.get("cos")
|
592 |
+
partial_rotation_size = cache_kwargs.get("partial_rotation_size")
|
593 |
+
using_rope = cos is not None and sin is not None
|
594 |
+
|
595 |
+
# Update the number of seen tokens
|
596 |
+
if layer_idx == 0:
|
597 |
+
self._seen_tokens += key_states.shape[-2]
|
598 |
+
|
599 |
+
# Update the sin/cos cache, which holds sin/cos values for all possible positions
|
600 |
+
if using_rope and layer_idx == 0:
|
601 |
+
# BC: some models still pass `sin`/`cos` with 2 dims. In those models, they are the full sin/cos. Remove
|
602 |
+
# after all RoPE models have a llama-like cache utilization.
|
603 |
+
if cos.dim() == 2:
|
604 |
+
self._cos_cache = cos
|
605 |
+
self._sin_cache = sin
|
606 |
+
else:
|
607 |
+
if self._cos_cache is None:
|
608 |
+
self._cos_cache = cos[0, ...]
|
609 |
+
self._sin_cache = sin[0, ...]
|
610 |
+
elif self._cos_cache.shape[0] < self.window_length:
|
611 |
+
self._cos_cache = torch.cat([self._cos_cache, cos[0, ...]], dim=0)
|
612 |
+
self._sin_cache = torch.cat([self._sin_cache, sin[0, ...]], dim=0)
|
613 |
+
|
614 |
+
# [bsz, num_heads, seq_len, head_dim]
|
615 |
+
if len(self.key_cache) <= layer_idx:
|
616 |
+
# Empty cache
|
617 |
+
self.key_cache.append(key_states)
|
618 |
+
self.value_cache.append(value_states)
|
619 |
+
|
620 |
+
elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
|
621 |
+
# Growing cache
|
622 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
623 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
624 |
+
|
625 |
+
else:
|
626 |
+
# Shifting cache
|
627 |
+
keys_to_keep = self.key_cache[layer_idx][
|
628 |
+
:, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
|
629 |
+
]
|
630 |
+
|
631 |
+
# On RoPE models, we need to recompute the Key rotation as the tokens are shifted
|
632 |
+
if using_rope:
|
633 |
+
rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
|
634 |
+
key_states, self._cos_cache[: self.window_length], self._sin_cache[: self.window_length]
|
635 |
+
)
|
636 |
+
if partial_rotation_size is not None:
|
637 |
+
keys_to_keep, keys_pass = (
|
638 |
+
keys_to_keep[..., :partial_rotation_size],
|
639 |
+
keys_to_keep[..., partial_rotation_size:],
|
640 |
+
)
|
641 |
+
keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
|
642 |
+
if partial_rotation_size is not None:
|
643 |
+
keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
|
644 |
+
|
645 |
+
# Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
|
646 |
+
sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
|
647 |
+
self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
|
648 |
+
|
649 |
+
sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
|
650 |
+
values_to_keep = self.value_cache[layer_idx][
|
651 |
+
:, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
|
652 |
+
]
|
653 |
+
self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
|
654 |
+
|
655 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
656 |
+
|
657 |
+
|
658 |
+
class StaticCache(Cache):
|
659 |
+
"""
|
660 |
+
Static Cache class to be used with `torch.compile(model)` and `torch.export()`.
|
661 |
+
|
662 |
+
Parameters:
|
663 |
+
config (`PretrainedConfig`):
|
664 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
665 |
+
max_batch_size (`int`):
|
666 |
+
The maximum batch size with which the model will be used.
|
667 |
+
max_cache_len (`int`):
|
668 |
+
The maximum sequence length with which the model will be used.
|
669 |
+
device (`torch.device`):
|
670 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
671 |
+
dtype (*optional*, defaults to `torch.float32`):
|
672 |
+
The default `dtype` to use when initializing the layer.
|
673 |
+
|
674 |
+
Example:
|
675 |
+
|
676 |
+
```python
|
677 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache
|
678 |
+
|
679 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
680 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
681 |
+
|
682 |
+
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
|
683 |
+
|
684 |
+
>>> # Prepare a cache class and pass it to model's forward
|
685 |
+
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
|
686 |
+
>>> max_generated_length = inputs.input_ids.shape[1] + 10
|
687 |
+
>>> past_key_values = StaticCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
|
688 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
689 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
690 |
+
```
|
691 |
+
"""
|
692 |
+
|
693 |
+
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
|
694 |
+
super().__init__()
|
695 |
+
self.max_batch_size = max_batch_size
|
696 |
+
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
|
697 |
+
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
698 |
+
self.head_dim = (
|
699 |
+
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
|
700 |
+
)
|
701 |
+
|
702 |
+
self.dtype = dtype if dtype is not None else torch.float32
|
703 |
+
self.num_key_value_heads = (
|
704 |
+
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
|
705 |
+
)
|
706 |
+
|
707 |
+
self.key_cache: List[torch.Tensor] = []
|
708 |
+
self.value_cache: List[torch.Tensor] = []
|
709 |
+
# Note: There will be significant perf decrease if switching to use 5D tensors instead.
|
710 |
+
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
|
711 |
+
for idx in range(config.num_hidden_layers):
|
712 |
+
new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
713 |
+
new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
714 |
+
# Notes:
|
715 |
+
# 1. `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
|
716 |
+
# breaks when updating the cache. It can't be used if the cache code is being compiled (but in that case
|
717 |
+
# it is not needed anyway)
|
718 |
+
# 2. `torch.export()` requires mutations to be registered as buffers.
|
719 |
+
if not is_torchdynamo_compiling():
|
720 |
+
self.register_buffer(f"key_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
|
721 |
+
self.register_buffer(f"value_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
|
722 |
+
new_layer_key_cache = getattr(self, f"key_cache_{idx}")
|
723 |
+
new_layer_value_cache = getattr(self, f"value_cache_{idx}")
|
724 |
+
torch._dynamo.mark_static_address(new_layer_key_cache)
|
725 |
+
torch._dynamo.mark_static_address(new_layer_value_cache)
|
726 |
+
self.key_cache.append(new_layer_key_cache)
|
727 |
+
self.value_cache.append(new_layer_value_cache)
|
728 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
729 |
+
|
730 |
+
def update(
|
731 |
+
self,
|
732 |
+
key_states: torch.Tensor,
|
733 |
+
value_states: torch.Tensor,
|
734 |
+
layer_idx: int,
|
735 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
736 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
737 |
+
"""
|
738 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
739 |
+
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
|
740 |
+
|
741 |
+
Parameters:
|
742 |
+
key_states (`torch.Tensor`):
|
743 |
+
The new key states to cache.
|
744 |
+
value_states (`torch.Tensor`):
|
745 |
+
The new value states to cache.
|
746 |
+
layer_idx (`int`):
|
747 |
+
The index of the layer to cache the states for.
|
748 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
749 |
+
Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
|
750 |
+
to know how where to write in the cache.
|
751 |
+
|
752 |
+
Return:
|
753 |
+
A tuple containing the updated key and value states.
|
754 |
+
"""
|
755 |
+
# Update the number of seen tokens
|
756 |
+
if layer_idx == 0:
|
757 |
+
self._seen_tokens += key_states.shape[-2]
|
758 |
+
|
759 |
+
cache_position = cache_kwargs.get("cache_position")
|
760 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
|
761 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
|
762 |
+
k_out = self.key_cache[layer_idx]
|
763 |
+
v_out = self.value_cache[layer_idx]
|
764 |
+
|
765 |
+
if cache_position is None:
|
766 |
+
k_out.copy_(key_states)
|
767 |
+
v_out.copy_(value_states)
|
768 |
+
else:
|
769 |
+
# Note: here we use `tensor.index_copy_(dim, index, tensor)` that is equivalent to
|
770 |
+
# `tensor[:, :, index] = tensor`, but the first one is compile-friendly and it does explicitly an in-place
|
771 |
+
# operation, that avoids copies and uses less memory.
|
772 |
+
try:
|
773 |
+
k_out.index_copy_(2, cache_position, key_states)
|
774 |
+
v_out.index_copy_(2, cache_position, value_states)
|
775 |
+
except NotImplementedError:
|
776 |
+
# The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
|
777 |
+
k_out[:, :, cache_position] = key_states
|
778 |
+
v_out[:, :, cache_position] = value_states
|
779 |
+
|
780 |
+
return k_out, v_out
|
781 |
+
|
782 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
783 |
+
"""Returns the sequence length of the cached states that were seen by the model."""
|
784 |
+
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
785 |
+
# limit the check to the first batch member and head dimension.
|
786 |
+
# TODO: deprecate this function in favor of `cache_position`
|
787 |
+
# return (self.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
|
788 |
+
return self._seen_tokens
|
789 |
+
|
790 |
+
def get_max_length(self) -> Optional[int]:
|
791 |
+
"""Returns the maximum sequence length of the cached states."""
|
792 |
+
return self.max_cache_len
|
793 |
+
|
794 |
+
def reset(self):
|
795 |
+
self._seen_tokens = 0
|
796 |
+
"""Resets the cache values while preserving the objects"""
|
797 |
+
for layer_idx in range(len(self.key_cache)):
|
798 |
+
# In-place ops prevent breaking the static address
|
799 |
+
self.key_cache[layer_idx].zero_()
|
800 |
+
self.value_cache[layer_idx].zero_()
|
801 |
+
|
802 |
+
|
803 |
+
class SlidingWindowCache(StaticCache):
|
804 |
+
"""
|
805 |
+
Sliding Window Cache class to be used with `torch.compile` for models like Mistral that support sliding window attention.
|
806 |
+
Every time when we try to update the cache, we compute the `indices` based on `cache_position >= self.config.sliding_window - 1`,
|
807 |
+
if true(which means the cache can not hold all the old key value states and new states together because of the sliding window constraint),
|
808 |
+
we need to do a cycle shift based on `indices` to replace the oldest states by the new key value states passed in.
|
809 |
+
|
810 |
+
The `to_shift` is only true once we are above sliding_window. Thus with `sliding_window==64`:
|
811 |
+
|
812 |
+
indices = (slicing + to_shift[-1].int()-1) % self.config.sliding_window
|
813 |
+
tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
|
814 |
+
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
|
815 |
+
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
|
816 |
+
55, 56, 57, 58, 59, 60, 61, 62, 63, 0])
|
817 |
+
|
818 |
+
We overwrite the cache using these, then we always write at cache_position (clamped to `sliding_window`)
|
819 |
+
|
820 |
+
Parameters:
|
821 |
+
config (`PretrainedConfig`):
|
822 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
823 |
+
max_batch_size (`int`):
|
824 |
+
The maximum batch size with which the model will be used.
|
825 |
+
max_cache_len (`int`):
|
826 |
+
The maximum sequence length with which the model will be used.
|
827 |
+
device (`torch.device`):
|
828 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
829 |
+
dtype (*optional*, defaults to `torch.float32`):
|
830 |
+
The default `dtype` to use when initializing the layer.
|
831 |
+
|
832 |
+
Example:
|
833 |
+
|
834 |
+
```python
|
835 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, SlidingWindowCache
|
836 |
+
|
837 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
|
838 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
839 |
+
|
840 |
+
>>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")
|
841 |
+
|
842 |
+
>>> # Prepare a cache class and pass it to model's forward
|
843 |
+
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
|
844 |
+
>>> max_generated_length = inputs.input_ids.shape[1] + 10
|
845 |
+
>>> past_key_values = SlidingWindowCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
|
846 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
847 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
848 |
+
```
|
849 |
+
"""
|
850 |
+
|
851 |
+
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
|
852 |
+
super().__init__(config, max_batch_size, max_cache_len, device, dtype)
|
853 |
+
if not hasattr(config, "sliding_window") or config.sliding_window is None:
|
854 |
+
raise ValueError(
|
855 |
+
"Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
|
856 |
+
"sliding window attention, please check if there is a `sliding_window` field in the model "
|
857 |
+
"config and it's not set to None."
|
858 |
+
)
|
859 |
+
max_cache_len = min(config.sliding_window, max_cache_len)
|
860 |
+
super().__init__(
|
861 |
+
config=config, max_batch_size=max_batch_size, max_cache_len=max_cache_len, device=device, dtype=dtype
|
862 |
+
)
|
863 |
+
|
864 |
+
def update(
|
865 |
+
self,
|
866 |
+
key_states: torch.Tensor,
|
867 |
+
value_states: torch.Tensor,
|
868 |
+
layer_idx: int,
|
869 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
870 |
+
) -> Tuple[torch.Tensor]:
|
871 |
+
cache_position = cache_kwargs.get("cache_position")
|
872 |
+
k_out = self.key_cache[layer_idx]
|
873 |
+
v_out = self.value_cache[layer_idx]
|
874 |
+
|
875 |
+
# assume this only happens in prefill phase when prompt length > sliding_window_size (= max_cache_len)
|
876 |
+
if cache_position.shape[0] > self.max_cache_len:
|
877 |
+
k_out = key_states[:, :, -self.max_cache_len :, :]
|
878 |
+
v_out = value_states[:, :, -self.max_cache_len :, :]
|
879 |
+
# Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
|
880 |
+
self.key_cache[layer_idx] += k_out
|
881 |
+
self.value_cache[layer_idx] += v_out
|
882 |
+
# we should return the whole states instead of k_out, v_out to take the whole prompt
|
883 |
+
# into consideration when building kv cache instead of just throwing away tokens outside of the window
|
884 |
+
return key_states, value_states
|
885 |
+
|
886 |
+
slicing = torch.ones(self.max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
|
887 |
+
cache_position = cache_position.clamp(0, self.max_cache_len - 1)
|
888 |
+
to_shift = cache_position >= self.max_cache_len - 1
|
889 |
+
indices = (slicing + to_shift[-1].int() - 1) % self.max_cache_len
|
890 |
+
|
891 |
+
k_out = k_out[:, :, indices]
|
892 |
+
v_out = v_out[:, :, indices]
|
893 |
+
|
894 |
+
try:
|
895 |
+
cache_position.to(device=k_out.device)
|
896 |
+
k_out.index_copy_(2, cache_position, key_states)
|
897 |
+
v_out.index_copy_(2, cache_position, value_states)
|
898 |
+
except NotImplementedError:
|
899 |
+
# The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
|
900 |
+
k_out[:, :, cache_position] = key_states
|
901 |
+
v_out[:, :, cache_position] = value_states
|
902 |
+
|
903 |
+
# `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
|
904 |
+
self.key_cache[layer_idx].zero_()
|
905 |
+
self.value_cache[layer_idx].zero_()
|
906 |
+
|
907 |
+
self.key_cache[layer_idx] += k_out
|
908 |
+
self.value_cache[layer_idx] += v_out
|
909 |
+
|
910 |
+
return k_out, v_out
|
911 |
+
|
912 |
+
def get_max_length(self) -> Optional[int]:
|
913 |
+
# in theory there is no limit because the sliding window size is fixed no matter how long the sentence is
|
914 |
+
return None
|
915 |
+
|
916 |
+
def reset(self):
|
917 |
+
for layer_idx in range(len(self.key_cache)):
|
918 |
+
# In-place ops prevent breaking the static address
|
919 |
+
self.key_cache[layer_idx].zero_()
|
920 |
+
self.value_cache[layer_idx].zero_()
|
921 |
+
|
922 |
+
|
923 |
+
class EncoderDecoderCache(Cache):
|
924 |
+
"""
|
925 |
+
Base, abstract class for all encoder-decoder caches. Can be used to hold combinations of self-attention and
|
926 |
+
cross-attention caches.
|
927 |
+
|
928 |
+
Example:
|
929 |
+
|
930 |
+
```python
|
931 |
+
>>> from transformers import AutoProcessor, AutoModelForCausalLM, DynamicCache, EncoderDecoderCache
|
932 |
+
|
933 |
+
>>> model = AutoModelForCausalLM.from_pretrained("openai/whisper-small")
|
934 |
+
>>> processor = AutoProcessor.from_pretrained("openai/whisper-small")
|
935 |
+
|
936 |
+
>>> inputs = processor(audio=YOUR-AUDIO, return_tensors="pt")
|
937 |
+
|
938 |
+
>>> # Prepare cache classes for encoder and decoder and pass it to model's forward
|
939 |
+
>>> self_attention_cache = DynamicCache()
|
940 |
+
>>> cross_attention_cache = DynamicCache()
|
941 |
+
>>> past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
|
942 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
943 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
944 |
+
```
|
945 |
+
|
946 |
+
"""
|
947 |
+
|
948 |
+
def __init__(self, self_attention_cache: Cache, cross_attention_cache: Cache):
|
949 |
+
super().__init__()
|
950 |
+
self.self_attention_cache = self_attention_cache
|
951 |
+
self.cross_attention_cache = cross_attention_cache
|
952 |
+
|
953 |
+
self.is_updated = {}
|
954 |
+
for layer_idx in range(len(cross_attention_cache.key_cache)):
|
955 |
+
self.is_updated[layer_idx] = bool(cross_attention_cache.get_seq_length(layer_idx) > 0)
|
956 |
+
|
957 |
+
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
958 |
+
"""
|
959 |
+
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
960 |
+
sequence length.
|
961 |
+
"""
|
962 |
+
if layer_idx < len(self):
|
963 |
+
return (
|
964 |
+
self.self_attention_cache.key_cache[layer_idx],
|
965 |
+
self.self_attention_cache.value_cache[layer_idx],
|
966 |
+
self.cross_attention_cache.key_cache[layer_idx],
|
967 |
+
self.cross_attention_cache.value_cache[layer_idx],
|
968 |
+
)
|
969 |
+
else:
|
970 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
971 |
+
|
972 |
+
def __len__(self):
|
973 |
+
"""
|
974 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
975 |
+
to the number of layers in the model.
|
976 |
+
"""
|
977 |
+
return len(self.self_attention_cache)
|
978 |
+
|
979 |
+
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
980 |
+
"""Converts the `EncoderDecoderCache` instance into its equivalent in the legacy cache format."""
|
981 |
+
legacy_cache = ()
|
982 |
+
if len(self.cross_attention_cache) > 0:
|
983 |
+
for self_attn, cross_attn in zip(
|
984 |
+
self.self_attention_cache.to_legacy_cache(), self.cross_attention_cache.to_legacy_cache()
|
985 |
+
):
|
986 |
+
legacy_cache += (self_attn + cross_attn,)
|
987 |
+
else:
|
988 |
+
legacy_cache = self.self_attention_cache.to_legacy_cache()
|
989 |
+
return legacy_cache
|
990 |
+
|
991 |
+
@classmethod
|
992 |
+
def from_legacy_cache(
|
993 |
+
cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
994 |
+
) -> "EncoderDecoderCache":
|
995 |
+
"""Converts a cache in the legacy cache format into an equivalent `EncoderDecoderCache`."""
|
996 |
+
cache = cls(self_attention_cache=DynamicCache(), cross_attention_cache=DynamicCache())
|
997 |
+
if past_key_values is not None:
|
998 |
+
for layer_idx in range(len(past_key_values)):
|
999 |
+
key_states, value_states = past_key_values[layer_idx][:2]
|
1000 |
+
cache.self_attention_cache.update(key_states, value_states, layer_idx)
|
1001 |
+
if len(past_key_values[layer_idx]) > 2:
|
1002 |
+
key_states, value_states = past_key_values[layer_idx][2:]
|
1003 |
+
cache.cross_attention_cache.update(key_states, value_states, layer_idx)
|
1004 |
+
cache.is_updated[layer_idx] = True
|
1005 |
+
return cache
|
1006 |
+
|
1007 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
1008 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
1009 |
+
if len(self.self_attention_cache.key_cache) <= layer_idx:
|
1010 |
+
return 0
|
1011 |
+
return (self.self_attention_cache.key_cache[layer_idx][0, 0].any(dim=-1)).sum()
|
1012 |
+
|
1013 |
+
def reset(self):
|
1014 |
+
if hasattr(self.self_attention_cache, "reset"):
|
1015 |
+
self.self_attention_cache.reset()
|
1016 |
+
if hasattr(self.cross_attention_cache, "reset"):
|
1017 |
+
self.cross_attention_cache.reset()
|
1018 |
+
elif not hasattr(self.self_attention_cache, "reset") and not hasattr(self.cross_attention_cache, "reset"):
|
1019 |
+
raise ValueError(
|
1020 |
+
"Neither self nor cross-attention cache have valid `.reset()` methods. `.reset()` should "
|
1021 |
+
"only be called on compatible cache classes, such as `StaticCache` or `SlidingWindowCache`. "
|
1022 |
+
f"Got {self.self_attention_cache.__str__()} for the self attention cache and "
|
1023 |
+
f"{self.cross_attention_cache.__str__()} for the cross attention cache."
|
1024 |
+
)
|
1025 |
+
for layer_idx in self.is_updated:
|
1026 |
+
self.is_updated[layer_idx] = False
|
1027 |
+
|
1028 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
1029 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
1030 |
+
self.self_attention_cache.reorder_cache(beam_idx)
|
1031 |
+
self.cross_attention_cache.reorder_cache(beam_idx)
|
1032 |
+
|
1033 |
+
def check_dynamic_cache(self, method: str):
|
1034 |
+
if not (
|
1035 |
+
isinstance(self.self_attention_cache, DynamicCache)
|
1036 |
+
and isinstance(self.cross_attention_cache, DynamicCache)
|
1037 |
+
):
|
1038 |
+
raise ValueError(
|
1039 |
+
f"`{method}` is only defined for dynamic cache, got {self.self_attention_cache.__str__()} for the self "
|
1040 |
+
f"attention cache and {self.cross_attention_cache.__str__()} for the cross attention cache."
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
# TODO(gante, sanchit-gandhi): move following functionality into `.generate`
|
1044 |
+
def crop(self, maximum_length: int):
|
1045 |
+
"""Crop the past key values up to a new `maximum_length` in terms of tokens. `maximum_length` can also be
|
1046 |
+
negative to remove `maximum_length` tokens. This is used in assisted decoding and contrastive search."""
|
1047 |
+
self.check_dynamic_cache(self.crop.__name__)
|
1048 |
+
self.self_attention_cache.crop(maximum_length)
|
1049 |
+
|
1050 |
+
def batch_split(self, full_batch_size: int, split_size: int) -> "List[EncoderDecoderCache]":
|
1051 |
+
"""Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
|
1052 |
+
`_split_model_inputs()` in `generation.utils`"""
|
1053 |
+
self.check_dynamic_cache(self.batch_split.__name__)
|
1054 |
+
self_attention_cache = self.self_attention_cache.batch_split(full_batch_size, split_size)
|
1055 |
+
cross_attention_cache = self.cross_attention_cache.batch_split(full_batch_size, split_size)
|
1056 |
+
|
1057 |
+
out = []
|
1058 |
+
for self_attn, cross_attn in zip(self_attention_cache, cross_attention_cache):
|
1059 |
+
out.append(EncoderDecoderCache(self_attn, cross_attn))
|
1060 |
+
return out
|
1061 |
+
|
1062 |
+
@classmethod
|
1063 |
+
def from_batch_splits(cls, splits: List["EncoderDecoderCache"]) -> "EncoderDecoderCache":
|
1064 |
+
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
|
1065 |
+
`generation.utils`"""
|
1066 |
+
self_attention_cache = DynamicCache()
|
1067 |
+
cross_attention_cache = DynamicCache()
|
1068 |
+
for idx in range(len(splits[0])):
|
1069 |
+
layer_keys = torch.cat([current.self_attention_cache.key_cache[idx] for current in splits], dim=0)
|
1070 |
+
layer_values = torch.cat([current.self_attention_cache.value_cache[idx] for current in splits], dim=0)
|
1071 |
+
self_attention_cache.update(layer_keys, layer_values, idx)
|
1072 |
+
|
1073 |
+
layer_keys = torch.cat([current.cross_attention_cache.key_cache[idx] for current in splits], dim=0)
|
1074 |
+
layer_values = torch.cat([current.cross_attention_cache.value_cache[idx] for current in splits], dim=0)
|
1075 |
+
cross_attention_cache.update(layer_keys, layer_values, idx)
|
1076 |
+
return cls(self_attention_cache, cross_attention_cache)
|
1077 |
+
|
1078 |
+
def batch_repeat_interleave(self, repeats: int):
|
1079 |
+
"""Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
|
1080 |
+
self.check_dynamic_cache(self.batch_repeat_interleave.__name__)
|
1081 |
+
self.self_attention_cache.batch_repeat_interleave(repeats)
|
1082 |
+
self.cross_attention_cache.batch_repeat_interleave(repeats)
|
1083 |
+
|
1084 |
+
def batch_select_indices(self, indices: torch.Tensor):
|
1085 |
+
"""Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
|
1086 |
+
self.check_dynamic_cache(self.batch_select_indices.__name__)
|
1087 |
+
self.self_attention_cache.batch_select_indices(indices)
|
1088 |
+
self.cross_attention_cache.batch_select_indices(indices)
|
1089 |
+
|
1090 |
+
|
1091 |
+
class HybridCache(Cache):
|
1092 |
+
"""
|
1093 |
+
Hybrid Cache class to be used with `torch.compile` for Gemma2 models that alternate between a local sliding window attention
|
1094 |
+
and global attention in every other layer. Under the hood, Hybrid Cache leverages ["SlidingWindowCache"] for sliding window attention
|
1095 |
+
and ["StaticCache"] for global attention. For more information, see the documentation of each subcomponeent cache class.
|
1096 |
+
|
1097 |
+
Parameters:
|
1098 |
+
config (`PretrainedConfig):
|
1099 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
1100 |
+
max_batch_size (`int`):
|
1101 |
+
The maximum batch size with which the model will be used.
|
1102 |
+
max_cache_len (`int`):
|
1103 |
+
The maximum sequence length with which the model will be used.
|
1104 |
+
device (`torch.device`, *optional*, defaults to `"cpu"`):
|
1105 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
1106 |
+
dtype (*optional*, defaults to `torch.float32`):
|
1107 |
+
The default `dtype` to use when initializing the layer.
|
1108 |
+
|
1109 |
+
Example:
|
1110 |
+
|
1111 |
+
```python
|
1112 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache
|
1113 |
+
|
1114 |
+
>>> model = AutoModelForCausalLM.from_pretrained("google/gemma-2-9b")
|
1115 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
|
1116 |
+
|
1117 |
+
>>> inputs = tokenizer(text="My name is Gemma", return_tensors="pt")
|
1118 |
+
|
1119 |
+
>>> # Prepare a cache class and pass it to model's forward
|
1120 |
+
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
|
1121 |
+
>>> max_generated_length = inputs.input_ids.shape[1] + 10
|
1122 |
+
>>> past_key_values = HybridCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
|
1123 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
1124 |
+
>>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
|
1125 |
+
```
|
1126 |
+
"""
|
1127 |
+
|
1128 |
+
def __init__(self, config: PretrainedConfig, max_batch_size, max_cache_len, device="cpu", dtype=None) -> None:
|
1129 |
+
super().__init__()
|
1130 |
+
if not hasattr(config, "sliding_window") or config.sliding_window is None:
|
1131 |
+
raise ValueError(
|
1132 |
+
"Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
|
1133 |
+
"sliding window attention, please check if there is a `sliding_window` field in the model "
|
1134 |
+
"config and it's not set to None."
|
1135 |
+
)
|
1136 |
+
self.max_cache_len = max_cache_len
|
1137 |
+
self.max_batch_size = max_batch_size
|
1138 |
+
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
1139 |
+
self.head_dim = (
|
1140 |
+
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
|
1141 |
+
)
|
1142 |
+
|
1143 |
+
self.dtype = dtype if dtype is not None else torch.float32
|
1144 |
+
self.num_key_value_heads = (
|
1145 |
+
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
|
1146 |
+
)
|
1147 |
+
self.is_sliding = torch.tensor(
|
1148 |
+
[not bool(i % 2) for i in range(config.num_hidden_layers)], dtype=torch.bool, device=device
|
1149 |
+
)
|
1150 |
+
self.key_cache: List[torch.Tensor] = []
|
1151 |
+
self.value_cache: List[torch.Tensor] = []
|
1152 |
+
global_cache_shape = (max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim)
|
1153 |
+
sliding_cache_shape = (
|
1154 |
+
max_batch_size,
|
1155 |
+
self.num_key_value_heads,
|
1156 |
+
min(config.sliding_window, max_cache_len),
|
1157 |
+
self.head_dim,
|
1158 |
+
)
|
1159 |
+
for i in range(config.num_hidden_layers):
|
1160 |
+
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
|
1161 |
+
# breaks when updating the cache.
|
1162 |
+
cache_shape = global_cache_shape if not self.is_sliding[i] else sliding_cache_shape
|
1163 |
+
new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
1164 |
+
new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
1165 |
+
torch._dynamo.mark_static_address(new_layer_key_cache)
|
1166 |
+
torch._dynamo.mark_static_address(new_layer_value_cache)
|
1167 |
+
self.key_cache.append(new_layer_key_cache)
|
1168 |
+
self.value_cache.append(new_layer_value_cache)
|
1169 |
+
|
1170 |
+
def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
|
1171 |
+
if cache_position.shape[0] > max_cache_len:
|
1172 |
+
k_out = key_states[:, :, -max_cache_len:, :]
|
1173 |
+
v_out = value_states[:, :, -max_cache_len:, :]
|
1174 |
+
# Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
|
1175 |
+
self.key_cache[layer_idx] += k_out
|
1176 |
+
self.value_cache[layer_idx] += v_out
|
1177 |
+
# we should return the whole states instead of k_out, v_out to take the whole prompt
|
1178 |
+
# into consideration when building kv cache instead of just throwing away tokens outside of the window
|
1179 |
+
return key_states, value_states
|
1180 |
+
|
1181 |
+
slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
|
1182 |
+
cache_position = cache_position.clamp(0, max_cache_len - 1)
|
1183 |
+
to_shift = cache_position >= max_cache_len - 1
|
1184 |
+
indices = (slicing + to_shift[-1].int() - 1) % max_cache_len
|
1185 |
+
k_out = k_out[:, :, indices]
|
1186 |
+
v_out = v_out[:, :, indices]
|
1187 |
+
|
1188 |
+
k_out[:, :, cache_position] = key_states
|
1189 |
+
v_out[:, :, cache_position] = value_states
|
1190 |
+
# `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
|
1191 |
+
self.key_cache[layer_idx].zero_()
|
1192 |
+
self.value_cache[layer_idx].zero_()
|
1193 |
+
|
1194 |
+
self.key_cache[layer_idx] += k_out
|
1195 |
+
self.value_cache[layer_idx] += v_out
|
1196 |
+
return k_out, v_out
|
1197 |
+
|
1198 |
+
def _static_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
|
1199 |
+
k_out[:, :, cache_position] = key_states
|
1200 |
+
v_out[:, :, cache_position] = value_states
|
1201 |
+
|
1202 |
+
self.key_cache[layer_idx] = k_out
|
1203 |
+
self.value_cache[layer_idx] = v_out
|
1204 |
+
return k_out, v_out
|
1205 |
+
|
1206 |
+
def update(
|
1207 |
+
self,
|
1208 |
+
key_states: torch.Tensor,
|
1209 |
+
value_states: torch.Tensor,
|
1210 |
+
layer_idx: int,
|
1211 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
1212 |
+
) -> Tuple[torch.Tensor]:
|
1213 |
+
cache_position = cache_kwargs.get("cache_position")
|
1214 |
+
sliding_window = cache_kwargs.get("sliding_window")
|
1215 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
|
1216 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
|
1217 |
+
k_out = self.key_cache[layer_idx]
|
1218 |
+
v_out = self.value_cache[layer_idx]
|
1219 |
+
if sliding_window:
|
1220 |
+
update_fn = self._sliding_update
|
1221 |
+
else:
|
1222 |
+
update_fn = self._static_update
|
1223 |
+
|
1224 |
+
return update_fn(
|
1225 |
+
cache_position,
|
1226 |
+
layer_idx,
|
1227 |
+
key_states,
|
1228 |
+
value_states,
|
1229 |
+
k_out,
|
1230 |
+
v_out,
|
1231 |
+
k_out.shape[2],
|
1232 |
+
)
|
1233 |
+
|
1234 |
+
def get_max_length(self) -> Optional[int]:
|
1235 |
+
# in theory there is no limit because the sliding window size is fixed
|
1236 |
+
# no matter how long the sentence is
|
1237 |
+
return self.max_cache_len
|
1238 |
+
|
1239 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0):
|
1240 |
+
return None
|
1241 |
+
|
1242 |
+
def reset(self):
|
1243 |
+
"""Resets the cache values while preserving the objects"""
|
1244 |
+
for layer_idx in range(len(self.key_cache)):
|
1245 |
+
# In-place ops prevent breaking the static address
|
1246 |
+
self.key_cache[layer_idx].zero_()
|
1247 |
+
self.value_cache[layer_idx].zero_()
|
1248 |
+
|
1249 |
+
|
1250 |
+
class MambaCache:
|
1251 |
+
"""
|
1252 |
+
Cache for mamba model which does not have attention mechanism and key value states.
|
1253 |
+
|
1254 |
+
Arguments:
|
1255 |
+
config (`PretrainedConfig):
|
1256 |
+
The configuration file defining the shape-related attributes required to initialize the static cache.
|
1257 |
+
max_batch_size (`int`):
|
1258 |
+
The maximum batch size with which the model will be used.
|
1259 |
+
dtype (*optional*, defaults to `torch.float16`):
|
1260 |
+
The default `dtype` to use when initializing the layer.
|
1261 |
+
device (`torch.device`, *optional*):
|
1262 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
1263 |
+
|
1264 |
+
Attributes:
|
1265 |
+
dtype: (`torch.dtype`):
|
1266 |
+
The default `dtype` used to initializing the cache.
|
1267 |
+
intermediate_size: (`int`):
|
1268 |
+
Model's intermediate_size taken from config.
|
1269 |
+
ssm_state_size: (`int`):
|
1270 |
+
Model's state_size taken from config.
|
1271 |
+
conv_kernel_size: (`int`):
|
1272 |
+
Model's convolution kernel size taken from config
|
1273 |
+
conv_states: (`torch.Tensor`):
|
1274 |
+
A tensor of shape `[layer_idx, batch_size, intermediate_size, conv_kernel_size]` that holds convolutional states.
|
1275 |
+
ssm_states: (`torch.Tensor`):
|
1276 |
+
A tensor of shape `[layer_idx, batch_size, intermediate_size, ssm_state_size]` that holds ssm states
|
1277 |
+
|
1278 |
+
Example:
|
1279 |
+
|
1280 |
+
```python
|
1281 |
+
>>> from transformers import AutoTokenizer, MambaForCausalLM, MambaCache
|
1282 |
+
|
1283 |
+
>>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
|
1284 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")
|
1285 |
+
|
1286 |
+
>>> inputs = tokenizer(text="My name is Mamba", return_tensors="pt")
|
1287 |
+
|
1288 |
+
>>> # Prepare a cache class and pass it to model's forward
|
1289 |
+
>>> past_key_values = MambaCache(config=model.config, max_batch_size=1, device=model.device, dtype=model.dtype)
|
1290 |
+
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
|
1291 |
+
>>> past_kv = outputs.past_key_values
|
1292 |
+
```
|
1293 |
+
"""
|
1294 |
+
|
1295 |
+
def __init__(
|
1296 |
+
self,
|
1297 |
+
config: PretrainedConfig,
|
1298 |
+
max_batch_size: int,
|
1299 |
+
dtype: torch.dtype = torch.float16,
|
1300 |
+
device: Optional[str] = None,
|
1301 |
+
**kwargs,
|
1302 |
+
):
|
1303 |
+
self.dtype = dtype
|
1304 |
+
self.max_batch_size = max_batch_size
|
1305 |
+
self.intermediate_size = config.intermediate_size
|
1306 |
+
self.ssm_state_size = config.state_size
|
1307 |
+
self.conv_kernel_size = config.conv_kernel
|
1308 |
+
|
1309 |
+
self.conv_states: torch.Tensor = torch.zeros(
|
1310 |
+
config.num_hidden_layers,
|
1311 |
+
self.max_batch_size,
|
1312 |
+
self.intermediate_size,
|
1313 |
+
self.conv_kernel_size,
|
1314 |
+
device=device,
|
1315 |
+
dtype=dtype,
|
1316 |
+
)
|
1317 |
+
self.ssm_states: torch.Tensor = torch.zeros(
|
1318 |
+
config.num_hidden_layers,
|
1319 |
+
self.max_batch_size,
|
1320 |
+
self.intermediate_size,
|
1321 |
+
self.ssm_state_size,
|
1322 |
+
device=device,
|
1323 |
+
dtype=dtype,
|
1324 |
+
)
|
1325 |
+
|
1326 |
+
torch._dynamo.mark_static_address(self.conv_states)
|
1327 |
+
torch._dynamo.mark_static_address(self.ssm_states)
|
1328 |
+
|
1329 |
+
def update_conv_state(
|
1330 |
+
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
|
1331 |
+
) -> torch.Tensor:
|
1332 |
+
conv_state = self.conv_states[layer_idx]
|
1333 |
+
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
|
1334 |
+
|
1335 |
+
conv_state = conv_state.roll(shifts=-1, dims=-1)
|
1336 |
+
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
|
1337 |
+
self.conv_states[layer_idx].zero_()
|
1338 |
+
self.conv_states[layer_idx] += conv_state
|
1339 |
+
return self.conv_states[layer_idx]
|
1340 |
+
|
1341 |
+
def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
|
1342 |
+
self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
|
1343 |
+
return self.ssm_states[layer_idx]
|
1344 |
+
|
1345 |
+
def reset(self):
|
1346 |
+
self.conv_states.zero_()
|
1347 |
+
self.ssm_states.zero_()
|
transformers_4_44_2__configuration_llama.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""LLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from .transformers_4_44_2__modeling_rope_utils import rope_config_validation
|
24 |
+
|
25 |
+
|
26 |
+
class LlamaConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
29 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
30 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
38 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
41 |
+
Dimension of the hidden representations.
|
42 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
43 |
+
Dimension of the MLP representations.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
+
Number of hidden layers in the Transformer decoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
47 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
48 |
+
num_key_value_heads (`int`, *optional*):
|
49 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
50 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
51 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
52 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
53 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
54 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
55 |
+
`num_attention_heads`.
|
56 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
57 |
+
The non-linear activation function (function or string) in the decoder.
|
58 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
59 |
+
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
|
60 |
+
Llama 2 up to 4096, CodeLlama up to 16384.
|
61 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
62 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
63 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
64 |
+
The epsilon used by the rms normalization layers.
|
65 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
66 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
67 |
+
relevant if `config.is_decoder=True`.
|
68 |
+
pad_token_id (`int`, *optional*):
|
69 |
+
Padding token id.
|
70 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
71 |
+
Beginning of stream token id.
|
72 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
73 |
+
End of stream token id.
|
74 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
75 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
76 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
77 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
78 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
79 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
80 |
+
Whether to tie weight embeddings
|
81 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
82 |
+
The base period of the RoPE embeddings.
|
83 |
+
rope_scaling (`Dict`, *optional*):
|
84 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
85 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
86 |
+
accordingly.
|
87 |
+
Expected contents:
|
88 |
+
`rope_type` (`str`):
|
89 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
90 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
91 |
+
`factor` (`float`, *optional*):
|
92 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
93 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
94 |
+
original maximum pre-trained length.
|
95 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
96 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
97 |
+
pretraining.
|
98 |
+
`attention_factor` (`float`, *optional*):
|
99 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
100 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
101 |
+
`factor` field to infer the suggested value.
|
102 |
+
`beta_fast` (`float`, *optional*):
|
103 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
104 |
+
ramp function. If unspecified, it defaults to 32.
|
105 |
+
`beta_slow` (`float`, *optional*):
|
106 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
107 |
+
ramp function. If unspecified, it defaults to 1.
|
108 |
+
`short_factor` (`List[float]`, *optional*):
|
109 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
110 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
111 |
+
size divided by the number of attention heads divided by 2
|
112 |
+
`long_factor` (`List[float]`, *optional*):
|
113 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
114 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
115 |
+
size divided by the number of attention heads divided by 2
|
116 |
+
`low_freq_factor` (`float`, *optional*):
|
117 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
118 |
+
`high_freq_factor` (`float`, *optional*):
|
119 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
120 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
121 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
122 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
123 |
+
The dropout ratio for the attention probabilities.
|
124 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
125 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
126 |
+
|
127 |
+
```python
|
128 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
129 |
+
|
130 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
131 |
+
>>> configuration = LlamaConfig()
|
132 |
+
|
133 |
+
>>> # Initializing a model from the llama-7b style configuration
|
134 |
+
>>> model = LlamaModel(configuration)
|
135 |
+
|
136 |
+
>>> # Accessing the model configuration
|
137 |
+
>>> configuration = model.config
|
138 |
+
```"""
|
139 |
+
|
140 |
+
model_type = "llama"
|
141 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
142 |
+
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
vocab_size=32000,
|
146 |
+
hidden_size=4096,
|
147 |
+
intermediate_size=11008,
|
148 |
+
num_hidden_layers=32,
|
149 |
+
num_attention_heads=32,
|
150 |
+
num_key_value_heads=None,
|
151 |
+
hidden_act="silu",
|
152 |
+
max_position_embeddings=2048,
|
153 |
+
initializer_range=0.02,
|
154 |
+
rms_norm_eps=1e-6,
|
155 |
+
use_cache=True,
|
156 |
+
pad_token_id=None,
|
157 |
+
bos_token_id=1,
|
158 |
+
eos_token_id=2,
|
159 |
+
pretraining_tp=1,
|
160 |
+
tie_word_embeddings=False,
|
161 |
+
rope_theta=10000.0,
|
162 |
+
rope_scaling=None,
|
163 |
+
attention_bias=False,
|
164 |
+
attention_dropout=0.0,
|
165 |
+
mlp_bias=False,
|
166 |
+
**kwargs,
|
167 |
+
):
|
168 |
+
self.vocab_size = vocab_size
|
169 |
+
self.max_position_embeddings = max_position_embeddings
|
170 |
+
self.hidden_size = hidden_size
|
171 |
+
self.intermediate_size = intermediate_size
|
172 |
+
self.num_hidden_layers = num_hidden_layers
|
173 |
+
self.num_attention_heads = num_attention_heads
|
174 |
+
|
175 |
+
# for backward compatibility
|
176 |
+
if num_key_value_heads is None:
|
177 |
+
num_key_value_heads = num_attention_heads
|
178 |
+
|
179 |
+
self.num_key_value_heads = num_key_value_heads
|
180 |
+
self.hidden_act = hidden_act
|
181 |
+
self.initializer_range = initializer_range
|
182 |
+
self.rms_norm_eps = rms_norm_eps
|
183 |
+
self.pretraining_tp = pretraining_tp
|
184 |
+
self.use_cache = use_cache
|
185 |
+
self.rope_theta = rope_theta
|
186 |
+
self.rope_scaling = rope_scaling
|
187 |
+
self.attention_bias = attention_bias
|
188 |
+
self.attention_dropout = attention_dropout
|
189 |
+
self.mlp_bias = mlp_bias
|
190 |
+
|
191 |
+
# Validate the correctness of rotary position embeddings parameters
|
192 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
193 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
194 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
195 |
+
rope_config_validation(self)
|
196 |
+
|
197 |
+
super().__init__(
|
198 |
+
pad_token_id=pad_token_id,
|
199 |
+
bos_token_id=bos_token_id,
|
200 |
+
eos_token_id=eos_token_id,
|
201 |
+
tie_word_embeddings=tie_word_embeddings,
|
202 |
+
**kwargs,
|
203 |
+
)
|
transformers_4_44_2__modeling_attn_mask_utils.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class AttentionMaskConverter:
|
22 |
+
"""
|
23 |
+
A utility attention mask class that allows one to:
|
24 |
+
- Create a causal 4d mask
|
25 |
+
- Create a causal 4d mask with slided window
|
26 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
27 |
+
key_value_length) that can be multiplied with attention scores
|
28 |
+
|
29 |
+
Examples:
|
30 |
+
|
31 |
+
```python
|
32 |
+
>>> import torch
|
33 |
+
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
34 |
+
|
35 |
+
>>> converter = AttentionMaskConverter(True)
|
36 |
+
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32)
|
37 |
+
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
38 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
39 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38],
|
40 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38],
|
41 |
+
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]])
|
42 |
+
```
|
43 |
+
|
44 |
+
Parameters:
|
45 |
+
is_causal (`bool`):
|
46 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
47 |
+
|
48 |
+
sliding_window (`int`, *optional*):
|
49 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
50 |
+
"""
|
51 |
+
|
52 |
+
is_causal: bool
|
53 |
+
sliding_window: int
|
54 |
+
|
55 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
56 |
+
self.is_causal = is_causal
|
57 |
+
self.sliding_window = sliding_window
|
58 |
+
|
59 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
60 |
+
raise ValueError(
|
61 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
62 |
+
)
|
63 |
+
|
64 |
+
def to_causal_4d(
|
65 |
+
self,
|
66 |
+
batch_size: int,
|
67 |
+
query_length: int,
|
68 |
+
key_value_length: int,
|
69 |
+
dtype: torch.dtype,
|
70 |
+
device: Union[torch.device, "str"] = "cpu",
|
71 |
+
) -> Optional[torch.Tensor]:
|
72 |
+
"""
|
73 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
74 |
+
bias to upper right hand triangular matrix (causal mask).
|
75 |
+
"""
|
76 |
+
if not self.is_causal:
|
77 |
+
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
|
78 |
+
|
79 |
+
# If shape is not cached, create a new causal mask and cache it
|
80 |
+
input_shape = (batch_size, query_length)
|
81 |
+
past_key_values_length = key_value_length - query_length
|
82 |
+
|
83 |
+
# create causal mask
|
84 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
85 |
+
causal_4d_mask = None
|
86 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
87 |
+
causal_4d_mask = self._make_causal_mask(
|
88 |
+
input_shape,
|
89 |
+
dtype,
|
90 |
+
device=device,
|
91 |
+
past_key_values_length=past_key_values_length,
|
92 |
+
sliding_window=self.sliding_window,
|
93 |
+
)
|
94 |
+
|
95 |
+
return causal_4d_mask
|
96 |
+
|
97 |
+
def to_4d(
|
98 |
+
self,
|
99 |
+
attention_mask_2d: torch.Tensor,
|
100 |
+
query_length: int,
|
101 |
+
dtype: torch.dtype,
|
102 |
+
key_value_length: Optional[int] = None,
|
103 |
+
) -> torch.Tensor:
|
104 |
+
"""
|
105 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
106 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
107 |
+
causal, a causal mask will be added.
|
108 |
+
"""
|
109 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
110 |
+
|
111 |
+
# create causal mask
|
112 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
113 |
+
causal_4d_mask = None
|
114 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
115 |
+
if key_value_length is None:
|
116 |
+
raise ValueError(
|
117 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
118 |
+
)
|
119 |
+
|
120 |
+
past_key_values_length = key_value_length - query_length
|
121 |
+
causal_4d_mask = self._make_causal_mask(
|
122 |
+
input_shape,
|
123 |
+
dtype,
|
124 |
+
device=attention_mask_2d.device,
|
125 |
+
past_key_values_length=past_key_values_length,
|
126 |
+
sliding_window=self.sliding_window,
|
127 |
+
)
|
128 |
+
elif self.sliding_window is not None:
|
129 |
+
raise NotImplementedError("Sliding window is currently only implemented for causal masking")
|
130 |
+
|
131 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
132 |
+
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
|
133 |
+
attention_mask_2d.device
|
134 |
+
)
|
135 |
+
|
136 |
+
if causal_4d_mask is not None:
|
137 |
+
expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min)
|
138 |
+
|
139 |
+
# expanded_attn_mask + causal_4d_mask can cause some overflow
|
140 |
+
expanded_4d_mask = expanded_attn_mask
|
141 |
+
|
142 |
+
return expanded_4d_mask
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
def _make_causal_mask(
|
146 |
+
input_ids_shape: torch.Size,
|
147 |
+
dtype: torch.dtype,
|
148 |
+
device: torch.device,
|
149 |
+
past_key_values_length: int = 0,
|
150 |
+
sliding_window: Optional[int] = None,
|
151 |
+
):
|
152 |
+
"""
|
153 |
+
Make causal mask used for bi-directional self-attention.
|
154 |
+
"""
|
155 |
+
bsz, tgt_len = input_ids_shape
|
156 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
157 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
158 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
159 |
+
|
160 |
+
mask = mask.to(dtype)
|
161 |
+
|
162 |
+
if past_key_values_length > 0:
|
163 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
164 |
+
|
165 |
+
# add lower triangular sliding window mask if necessary
|
166 |
+
if sliding_window is not None:
|
167 |
+
diagonal = past_key_values_length - sliding_window - 1
|
168 |
+
|
169 |
+
context_mask = torch.tril(torch.ones_like(mask, dtype=torch.bool), diagonal=diagonal)
|
170 |
+
mask.masked_fill_(context_mask, torch.finfo(dtype).min)
|
171 |
+
|
172 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
173 |
+
|
174 |
+
@staticmethod
|
175 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
176 |
+
"""
|
177 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
178 |
+
"""
|
179 |
+
bsz, src_len = mask.size()
|
180 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
181 |
+
|
182 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
183 |
+
|
184 |
+
inverted_mask = 1.0 - expanded_mask
|
185 |
+
|
186 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def _unmask_unattended(
|
190 |
+
expanded_mask: torch.FloatTensor,
|
191 |
+
min_dtype: float,
|
192 |
+
):
|
193 |
+
# fmt: off
|
194 |
+
"""
|
195 |
+
Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when
|
196 |
+
using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
197 |
+
Details: https://github.com/pytorch/pytorch/issues/110213
|
198 |
+
|
199 |
+
`expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len].
|
200 |
+
`attention_mask` is [bsz, src_seq_len].
|
201 |
+
|
202 |
+
The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias.
|
203 |
+
|
204 |
+
For example, if `expanded_mask` is (e.g. here left-padding case)
|
205 |
+
```
|
206 |
+
[[[[0, 0, 0],
|
207 |
+
[0, 0, 0],
|
208 |
+
[0, 0, 1]]],
|
209 |
+
[[[1, 0, 0],
|
210 |
+
[1, 1, 0],
|
211 |
+
[1, 1, 1]]],
|
212 |
+
[[[0, 0, 0],
|
213 |
+
[0, 1, 0],
|
214 |
+
[0, 1, 1]]]]
|
215 |
+
```
|
216 |
+
then the modified `expanded_mask` will be
|
217 |
+
```
|
218 |
+
[[[[1, 1, 1], <-- modified
|
219 |
+
[1, 1, 1], <-- modified
|
220 |
+
[0, 0, 1]]],
|
221 |
+
[[[1, 0, 0],
|
222 |
+
[1, 1, 0],
|
223 |
+
[1, 1, 1]]],
|
224 |
+
[[[1, 1, 1], <-- modified
|
225 |
+
[0, 1, 0],
|
226 |
+
[0, 1, 1]]]]
|
227 |
+
```
|
228 |
+
"""
|
229 |
+
# fmt: on
|
230 |
+
if expanded_mask.dtype == torch.bool:
|
231 |
+
raise ValueError(
|
232 |
+
"AttentionMaskConverter._unmask_unattended expects a float `expanded_mask`, got a BoolTensor."
|
233 |
+
)
|
234 |
+
|
235 |
+
return expanded_mask.mul(~torch.all(expanded_mask == min_dtype, dim=-1, keepdim=True))
|
236 |
+
|
237 |
+
@staticmethod
|
238 |
+
def _ignore_causal_mask_sdpa(
|
239 |
+
attention_mask: Optional[torch.Tensor],
|
240 |
+
inputs_embeds: torch.Tensor,
|
241 |
+
past_key_values_length: int,
|
242 |
+
sliding_window: Optional[int] = None,
|
243 |
+
is_training: bool = False,
|
244 |
+
) -> bool:
|
245 |
+
"""
|
246 |
+
Detects whether the optional user-specified attention_mask & the automatically created causal mask can be ignored in case PyTorch's SDPA is used, rather relying on SDPA's `is_causal` argument.
|
247 |
+
|
248 |
+
In case no token is masked in the `attention_mask` argument, if `query_length == 1` or
|
249 |
+
`key_value_length == query_length`, we rather rely on SDPA `is_causal` argument to use causal/non-causal masks,
|
250 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
251 |
+
"""
|
252 |
+
|
253 |
+
_, query_length = inputs_embeds.shape[0], inputs_embeds.shape[1]
|
254 |
+
key_value_length = query_length + past_key_values_length
|
255 |
+
|
256 |
+
is_tracing = (
|
257 |
+
torch.jit.is_tracing()
|
258 |
+
or isinstance(inputs_embeds, torch.fx.Proxy)
|
259 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
260 |
+
)
|
261 |
+
|
262 |
+
ignore_causal_mask = False
|
263 |
+
|
264 |
+
if attention_mask is None:
|
265 |
+
# TODO: When tracing with TorchDynamo with fullgraph=True, the model is recompiled depending on the input shape, thus SDPA's `is_causal` argument is rightfully updated (see https://gist.github.com/fxmarty/1313f39037fc1c112508989628c57363). However, when using `torch.export` or
|
266 |
+
# or `torch.onnx.dynamo_export`, we must pass an example input, and `is_causal` behavior is hard-coded. If a user exports a model with q_len > 1, the exported model will hard-code `is_causal=True` which is in general wrong (see https://github.com/pytorch/pytorch/issues/108108).
|
267 |
+
# Thus, we only set `ignore_causal_mask = True` if the model is set to training.
|
268 |
+
#
|
269 |
+
# Besides, jit.trace can not handle the `q_len > 1` condition for `is_causal` ("TypeError: scaled_dot_product_attention(): argument 'is_causal' must be bool, not Tensor").
|
270 |
+
if (
|
271 |
+
(is_training or not is_tracing)
|
272 |
+
and (query_length == 1 or key_value_length == query_length)
|
273 |
+
and (sliding_window is None or key_value_length < sliding_window)
|
274 |
+
):
|
275 |
+
ignore_causal_mask = True
|
276 |
+
elif sliding_window is None or key_value_length < sliding_window:
|
277 |
+
if len(attention_mask.shape) == 4:
|
278 |
+
return False
|
279 |
+
elif (is_training or not is_tracing) and torch.all(attention_mask == 1):
|
280 |
+
if query_length == 1 or key_value_length == query_length:
|
281 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
282 |
+
ignore_causal_mask = True
|
283 |
+
|
284 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
|
285 |
+
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
286 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
287 |
+
# TODO: maybe revisit this with https://github.com/pytorch/pytorch/pull/114823 in PyTorch 2.3.
|
288 |
+
|
289 |
+
return ignore_causal_mask
|
290 |
+
|
291 |
+
|
292 |
+
def _prepare_4d_causal_attention_mask(
|
293 |
+
attention_mask: Optional[torch.Tensor],
|
294 |
+
input_shape: Union[torch.Size, Tuple, List],
|
295 |
+
inputs_embeds: torch.Tensor,
|
296 |
+
past_key_values_length: int,
|
297 |
+
sliding_window: Optional[int] = None,
|
298 |
+
):
|
299 |
+
"""
|
300 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
301 |
+
`(batch_size, key_value_length)`
|
302 |
+
|
303 |
+
Args:
|
304 |
+
attention_mask (`torch.Tensor` or `None`):
|
305 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
306 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
307 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
308 |
+
inputs_embeds (`torch.Tensor`):
|
309 |
+
The embedded inputs as a torch Tensor.
|
310 |
+
past_key_values_length (`int`):
|
311 |
+
The length of the key value cache.
|
312 |
+
sliding_window (`int`, *optional*):
|
313 |
+
If the model uses windowed attention, a sliding window should be passed.
|
314 |
+
"""
|
315 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
316 |
+
|
317 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
318 |
+
|
319 |
+
# 4d mask is passed through the layers
|
320 |
+
if attention_mask is not None and len(attention_mask.shape) == 2:
|
321 |
+
attention_mask = attn_mask_converter.to_4d(
|
322 |
+
attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype
|
323 |
+
)
|
324 |
+
elif attention_mask is not None and len(attention_mask.shape) == 4:
|
325 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
326 |
+
if tuple(attention_mask.shape) != expected_shape:
|
327 |
+
raise ValueError(
|
328 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
329 |
+
)
|
330 |
+
else:
|
331 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
332 |
+
inverted_mask = 1.0 - attention_mask
|
333 |
+
attention_mask = inverted_mask.masked_fill(
|
334 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
335 |
+
)
|
336 |
+
else:
|
337 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
338 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
339 |
+
)
|
340 |
+
|
341 |
+
return attention_mask
|
342 |
+
|
343 |
+
|
344 |
+
# Adapted from _prepare_4d_causal_attention_mask
|
345 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(
|
346 |
+
attention_mask: Optional[torch.Tensor],
|
347 |
+
input_shape: Union[torch.Size, Tuple, List],
|
348 |
+
inputs_embeds: torch.Tensor,
|
349 |
+
past_key_values_length: int,
|
350 |
+
sliding_window: Optional[int] = None,
|
351 |
+
):
|
352 |
+
"""
|
353 |
+
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
|
354 |
+
|
355 |
+
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
|
356 |
+
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
|
357 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
358 |
+
"""
|
359 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
360 |
+
|
361 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
362 |
+
|
363 |
+
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
364 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
365 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
366 |
+
is_tracing = (
|
367 |
+
torch.jit.is_tracing()
|
368 |
+
or isinstance(inputs_embeds, torch.fx.Proxy)
|
369 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
370 |
+
)
|
371 |
+
|
372 |
+
ignore_causal_mask = AttentionMaskConverter._ignore_causal_mask_sdpa(
|
373 |
+
attention_mask=attention_mask,
|
374 |
+
inputs_embeds=inputs_embeds,
|
375 |
+
past_key_values_length=past_key_values_length,
|
376 |
+
sliding_window=sliding_window,
|
377 |
+
)
|
378 |
+
|
379 |
+
if ignore_causal_mask:
|
380 |
+
expanded_4d_mask = None
|
381 |
+
elif attention_mask is None:
|
382 |
+
expanded_4d_mask = attn_mask_converter.to_causal_4d(
|
383 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
384 |
+
)
|
385 |
+
else:
|
386 |
+
if attention_mask.dim() == 4:
|
387 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
388 |
+
if attention_mask.max() != 0:
|
389 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
390 |
+
expanded_4d_mask = attention_mask
|
391 |
+
else:
|
392 |
+
expanded_4d_mask = attn_mask_converter.to_4d(
|
393 |
+
attention_mask,
|
394 |
+
input_shape[-1],
|
395 |
+
dtype=inputs_embeds.dtype,
|
396 |
+
key_value_length=key_value_length,
|
397 |
+
)
|
398 |
+
|
399 |
+
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
|
400 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
401 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
402 |
+
if not is_tracing and expanded_4d_mask.device.type == "cuda":
|
403 |
+
expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
|
404 |
+
expanded_4d_mask, min_dtype=torch.finfo(inputs_embeds.dtype).min
|
405 |
+
)
|
406 |
+
|
407 |
+
return expanded_4d_mask
|
408 |
+
|
409 |
+
|
410 |
+
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
411 |
+
"""
|
412 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
413 |
+
`(batch_size, key_value_length)`
|
414 |
+
|
415 |
+
Args:
|
416 |
+
mask (`torch.Tensor`):
|
417 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
418 |
+
dtype (`torch.dtype`):
|
419 |
+
The torch dtype the created mask shall have.
|
420 |
+
tgt_len (`int`):
|
421 |
+
The target length or query length the created mask shall have.
|
422 |
+
"""
|
423 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
424 |
+
|
425 |
+
|
426 |
+
def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
427 |
+
"""
|
428 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
429 |
+
`(batch_size, key_value_length)`
|
430 |
+
|
431 |
+
Args:
|
432 |
+
mask (`torch.Tensor`):
|
433 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
434 |
+
dtype (`torch.dtype`):
|
435 |
+
The torch dtype the created mask shall have.
|
436 |
+
tgt_len (`int`):
|
437 |
+
The target length or query length the created mask shall have.
|
438 |
+
"""
|
439 |
+
_, key_value_length = mask.shape
|
440 |
+
tgt_len = tgt_len if tgt_len is not None else key_value_length
|
441 |
+
|
442 |
+
is_tracing = (
|
443 |
+
torch.jit.is_tracing()
|
444 |
+
or isinstance(mask, torch.fx.Proxy)
|
445 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
446 |
+
)
|
447 |
+
|
448 |
+
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture data-dependent controlflows.
|
449 |
+
if not is_tracing and torch.all(mask == 1):
|
450 |
+
return None
|
451 |
+
else:
|
452 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
453 |
+
|
454 |
+
|
455 |
+
def _create_4d_causal_attention_mask(
|
456 |
+
input_shape: Union[torch.Size, Tuple, List],
|
457 |
+
dtype: torch.dtype,
|
458 |
+
device: torch.device,
|
459 |
+
past_key_values_length: int = 0,
|
460 |
+
sliding_window: Optional[int] = None,
|
461 |
+
) -> Optional[torch.Tensor]:
|
462 |
+
"""
|
463 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
464 |
+
|
465 |
+
Args:
|
466 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
467 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
468 |
+
dtype (`torch.dtype`):
|
469 |
+
The torch dtype the created mask shall have.
|
470 |
+
device (`int`):
|
471 |
+
The torch device the created mask shall have.
|
472 |
+
sliding_window (`int`, *optional*):
|
473 |
+
If the model uses windowed attention, a sliding window should be passed.
|
474 |
+
"""
|
475 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
476 |
+
|
477 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
478 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
479 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
480 |
+
)
|
481 |
+
|
482 |
+
return attention_mask
|
transformers_4_44_2__modeling_flash_attention_utils_backward_compat.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import os
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
|
24 |
+
from functools import lru_cache
|
25 |
+
import importlib.metadata
|
26 |
+
import importlib.util
|
27 |
+
from packaging import version
|
28 |
+
|
29 |
+
from transformers.utils import is_flash_attn_2_available
|
30 |
+
|
31 |
+
|
32 |
+
if is_flash_attn_2_available():
|
33 |
+
try:
|
34 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
35 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
36 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
37 |
+
except ImportError:
|
38 |
+
raise "Unable to import flash_attn"
|
39 |
+
|
40 |
+
|
41 |
+
def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
|
42 |
+
# Check if the package spec exists and grab its version to avoid importing a local directory
|
43 |
+
package_exists = importlib.util.find_spec(pkg_name) is not None
|
44 |
+
package_version = "N/A"
|
45 |
+
if package_exists:
|
46 |
+
try:
|
47 |
+
# Primary method to get the package version
|
48 |
+
package_version = importlib.metadata.version(pkg_name)
|
49 |
+
except importlib.metadata.PackageNotFoundError:
|
50 |
+
# Fallback method: Only for "torch" and versions containing "dev"
|
51 |
+
if pkg_name == "torch":
|
52 |
+
try:
|
53 |
+
package = importlib.import_module(pkg_name)
|
54 |
+
temp_version = getattr(package, "__version__", "N/A")
|
55 |
+
# Check if the version contains "dev"
|
56 |
+
if "dev" in temp_version:
|
57 |
+
package_version = temp_version
|
58 |
+
package_exists = True
|
59 |
+
else:
|
60 |
+
package_exists = False
|
61 |
+
except ImportError:
|
62 |
+
# If the package can't be imported, it's not available
|
63 |
+
package_exists = False
|
64 |
+
else:
|
65 |
+
# For packages other than "torch", don't attempt the fallback and set as not available
|
66 |
+
package_exists = False
|
67 |
+
if return_version:
|
68 |
+
return package_exists, package_version
|
69 |
+
else:
|
70 |
+
return package_exists
|
71 |
+
|
72 |
+
|
73 |
+
@lru_cache()
|
74 |
+
def is_flash_attn_greater_or_equal(library_version: str):
|
75 |
+
if not _is_package_available("flash_attn"):
|
76 |
+
return False
|
77 |
+
|
78 |
+
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(library_version)
|
79 |
+
|
80 |
+
|
81 |
+
def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
82 |
+
"""
|
83 |
+
Retrieves indexing data required to repad unpadded (ragged) tensors.
|
84 |
+
|
85 |
+
Arguments:
|
86 |
+
attention_mask (`torch.Tensor`):
|
87 |
+
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
|
88 |
+
|
89 |
+
Return:
|
90 |
+
indices (`torch.Tensor`):
|
91 |
+
The indices of non-masked tokens from the flattened input sequence.
|
92 |
+
cu_seqlens (`torch.Tensor`):
|
93 |
+
The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
|
94 |
+
max_seqlen_in_batch (`int`):
|
95 |
+
Maximum sequence length in batch.
|
96 |
+
"""
|
97 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
98 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
99 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
100 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
101 |
+
return (
|
102 |
+
indices,
|
103 |
+
cu_seqlens,
|
104 |
+
max_seqlen_in_batch,
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
def _upad_input(
|
109 |
+
query_layer: torch.Tensor,
|
110 |
+
key_layer: torch.Tensor,
|
111 |
+
value_layer: torch.Tensor,
|
112 |
+
attention_mask: torch.Tensor,
|
113 |
+
query_length: int,
|
114 |
+
):
|
115 |
+
"""
|
116 |
+
Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches.
|
117 |
+
|
118 |
+
This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary
|
119 |
+
tensors for query, key, value tensors.
|
120 |
+
|
121 |
+
Arguments:
|
122 |
+
query_layer (`torch.Tensor`):
|
123 |
+
Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
|
124 |
+
key_layer (`torch.Tensor`):
|
125 |
+
Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
126 |
+
value_layer (`torch.Tensor`):
|
127 |
+
Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
128 |
+
attention_mask (`torch.Tensor`):
|
129 |
+
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
|
130 |
+
query_length (`int`):
|
131 |
+
Target length.
|
132 |
+
|
133 |
+
Return:
|
134 |
+
query_layer (`torch.Tensor`):
|
135 |
+
Query state without padding. Shape: (total_target_length, num_heads, head_dim).
|
136 |
+
key_layer (`torch.Tensor`):
|
137 |
+
Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
138 |
+
value_layer (`torch.Tensor`):
|
139 |
+
Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
140 |
+
indices_q (`torch.Tensor`):
|
141 |
+
The indices of non-masked tokens from the flattened input target sequence.
|
142 |
+
(cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
|
143 |
+
The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
|
144 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
|
145 |
+
Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
|
146 |
+
"""
|
147 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
148 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
149 |
+
|
150 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
|
151 |
+
value_layer = index_first_axis(
|
152 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
153 |
+
)
|
154 |
+
if query_length == kv_seq_len:
|
155 |
+
query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k)
|
156 |
+
cu_seqlens_q = cu_seqlens_k
|
157 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
158 |
+
indices_q = indices_k
|
159 |
+
elif query_length == 1:
|
160 |
+
max_seqlen_in_batch_q = 1
|
161 |
+
cu_seqlens_q = torch.arange(
|
162 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
163 |
+
) # There is a memcpy here, that is very bad.
|
164 |
+
indices_q = cu_seqlens_q[:-1]
|
165 |
+
query_layer = query_layer.squeeze(1)
|
166 |
+
else:
|
167 |
+
# The -q_len: slice assumes left padding.
|
168 |
+
attention_mask = attention_mask[:, -query_length:]
|
169 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
170 |
+
|
171 |
+
return (
|
172 |
+
query_layer,
|
173 |
+
key_layer,
|
174 |
+
value_layer,
|
175 |
+
indices_q,
|
176 |
+
(cu_seqlens_q, cu_seqlens_k),
|
177 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
def prepare_fa2_from_position_ids(query, key, value, position_ids):
|
182 |
+
"""
|
183 |
+
This function returns necessary arguments to call `flash_attn_varlen_func`.
|
184 |
+
All three query, key, value states will be flattened.
|
185 |
+
Cummulative lengths of each examples in the batch will be extracted from position_ids.
|
186 |
+
|
187 |
+
NOTE: ideally cummulative lengths should be prepared at the data collator stage
|
188 |
+
|
189 |
+
Arguments:
|
190 |
+
query (`torch.Tensor`):
|
191 |
+
Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
|
192 |
+
key (`torch.Tensor`):
|
193 |
+
Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
194 |
+
value (`torch.Tensor`):
|
195 |
+
Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
196 |
+
position_ids (`torch.Tensor`):
|
197 |
+
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
|
198 |
+
|
199 |
+
Return:
|
200 |
+
query (`torch.Tensor`):
|
201 |
+
Query state without padding. Shape: (total_target_length, num_heads, head_dim).
|
202 |
+
key (`torch.Tensor`):
|
203 |
+
Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
204 |
+
value (`torch.Tensor`):
|
205 |
+
Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
206 |
+
indices_q (`torch.Tensor`):
|
207 |
+
The indices of non-masked tokens from the flattened input target sequence.
|
208 |
+
(cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
|
209 |
+
The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
|
210 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
|
211 |
+
Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
|
212 |
+
"""
|
213 |
+
query = query.view(-1, query.size(-2), query.size(-1))
|
214 |
+
key = key.view(-1, key.size(-2), key.size(-1))
|
215 |
+
value = value.view(-1, value.size(-2), value.size(-1))
|
216 |
+
position_ids = position_ids.flatten()
|
217 |
+
indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32)
|
218 |
+
|
219 |
+
cu_seq_lens = torch.cat(
|
220 |
+
(
|
221 |
+
indices_q[position_ids == 0],
|
222 |
+
torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32),
|
223 |
+
)
|
224 |
+
)
|
225 |
+
|
226 |
+
max_length = position_ids.max() + 1
|
227 |
+
|
228 |
+
return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length))
|
229 |
+
|
230 |
+
|
231 |
+
def _flash_attention_forward(
|
232 |
+
query_states: torch.Tensor,
|
233 |
+
key_states: torch.Tensor,
|
234 |
+
value_states: torch.Tensor,
|
235 |
+
attention_mask: torch.Tensor,
|
236 |
+
query_length: int,
|
237 |
+
is_causal: bool,
|
238 |
+
dropout: float = 0.0,
|
239 |
+
position_ids: Optional[torch.Tensor] = None,
|
240 |
+
softmax_scale: Optional[float] = None,
|
241 |
+
sliding_window: Optional[int] = None,
|
242 |
+
use_top_left_mask: bool = False,
|
243 |
+
softcap: Optional[float] = None,
|
244 |
+
deterministic: bool = None,
|
245 |
+
):
|
246 |
+
"""
|
247 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
248 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
query_states (`torch.Tensor`):
|
252 |
+
Input query states to be passed to Flash Attention API
|
253 |
+
key_states (`torch.Tensor`):
|
254 |
+
Input key states to be passed to Flash Attention API
|
255 |
+
value_states (`torch.Tensor`):
|
256 |
+
Input value states to be passed to Flash Attention API
|
257 |
+
attention_mask (`torch.Tensor`):
|
258 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
259 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
260 |
+
dropout (`float`):
|
261 |
+
Attention dropout
|
262 |
+
softmax_scale (`float`, *optional*):
|
263 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
264 |
+
use_top_left_mask (`bool`, defaults to `False`):
|
265 |
+
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
|
266 |
+
softcap (`float`, *optional*):
|
267 |
+
Softcap for the attention logits, used e.g. in gemma2.
|
268 |
+
deterministic (`bool`, *optional*):
|
269 |
+
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
|
270 |
+
"""
|
271 |
+
if not use_top_left_mask:
|
272 |
+
causal = is_causal
|
273 |
+
else:
|
274 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__.
|
275 |
+
causal = is_causal and query_length != 1
|
276 |
+
|
277 |
+
# Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
|
278 |
+
use_sliding_windows = (
|
279 |
+
_flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
|
280 |
+
)
|
281 |
+
flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}
|
282 |
+
|
283 |
+
if is_flash_attn_greater_or_equal("2.4.1"):
|
284 |
+
if deterministic is None:
|
285 |
+
deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
|
286 |
+
flash_kwargs["deterministic"] = deterministic
|
287 |
+
|
288 |
+
if softcap is not None:
|
289 |
+
flash_kwargs["softcap"] = softcap
|
290 |
+
|
291 |
+
# Contains at least one padding token in the sequence
|
292 |
+
if attention_mask is not None:
|
293 |
+
batch_size = query_states.shape[0]
|
294 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
|
295 |
+
query_states, key_states, value_states, attention_mask, query_length
|
296 |
+
)
|
297 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
298 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
299 |
+
|
300 |
+
attn_output_unpad = flash_attn_varlen_func(
|
301 |
+
query_states,
|
302 |
+
key_states,
|
303 |
+
value_states,
|
304 |
+
cu_seqlens_q=cu_seqlens_q,
|
305 |
+
cu_seqlens_k=cu_seqlens_k,
|
306 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
307 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
308 |
+
dropout_p=dropout,
|
309 |
+
softmax_scale=softmax_scale,
|
310 |
+
causal=causal,
|
311 |
+
**flash_kwargs,
|
312 |
+
)
|
313 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
314 |
+
|
315 |
+
# If position_ids is provided and check all examples do not contain only 1 sequence, If tensor in increasing
|
316 |
+
# then we probably have one sequence, otherwise it is packed. Additionally check we are in pre-fill/training stage.
|
317 |
+
# Use `flash_attn_varlen_func` to prevent cross-example attention and also allow padding free approach
|
318 |
+
elif position_ids is not None and query_length != 1 and not (torch.diff(position_ids, dim=-1) >= 0).all():
|
319 |
+
batch_size = query_states.size(0)
|
320 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = prepare_fa2_from_position_ids(
|
321 |
+
query_states, key_states, value_states, position_ids
|
322 |
+
)
|
323 |
+
|
324 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
325 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
326 |
+
|
327 |
+
attn_output = flash_attn_varlen_func(
|
328 |
+
query_states,
|
329 |
+
key_states,
|
330 |
+
value_states,
|
331 |
+
cu_seqlens_q=cu_seqlens_q,
|
332 |
+
cu_seqlens_k=cu_seqlens_k,
|
333 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
334 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
335 |
+
dropout_p=dropout,
|
336 |
+
softmax_scale=softmax_scale,
|
337 |
+
causal=causal,
|
338 |
+
**flash_kwargs,
|
339 |
+
)
|
340 |
+
|
341 |
+
attn_output = attn_output.view(batch_size, -1, attn_output.size(-2), attn_output.size(-1))
|
342 |
+
|
343 |
+
else:
|
344 |
+
attn_output = flash_attn_func(
|
345 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
|
346 |
+
)
|
347 |
+
|
348 |
+
return attn_output
|
transformers_4_44_2__modeling_outputs.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
transformers_4_44_2__modeling_rope_utils.py
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
from transformers.configuration_utils import PretrainedConfig
|
19 |
+
from transformers.utils import is_torch_available, logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
if is_torch_available():
|
26 |
+
import torch
|
27 |
+
|
28 |
+
|
29 |
+
def _compute_default_rope_parameters(
|
30 |
+
config: Optional[PretrainedConfig] = None,
|
31 |
+
device: Optional["torch.device"] = None,
|
32 |
+
seq_len: Optional[int] = None,
|
33 |
+
**rope_kwargs,
|
34 |
+
) -> Tuple["torch.Tensor", float]:
|
35 |
+
"""
|
36 |
+
Computes the inverse frequencies according to the original RoPE implementation
|
37 |
+
Args:
|
38 |
+
config ([`~transformers.PretrainedConfig`]):
|
39 |
+
The model configuration.
|
40 |
+
device (`torch.device`):
|
41 |
+
The device to use for initialization of the inverse frequencies.
|
42 |
+
seq_len (`int`, *optional*):
|
43 |
+
The current sequence length. Unused for this type of RoPE.
|
44 |
+
rope_kwargs (`Dict`, *optional*):
|
45 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
46 |
+
Returns:
|
47 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
48 |
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
49 |
+
"""
|
50 |
+
if config is not None and len(rope_kwargs) > 0:
|
51 |
+
raise ValueError(
|
52 |
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
53 |
+
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
54 |
+
)
|
55 |
+
if len(rope_kwargs) > 0:
|
56 |
+
base = rope_kwargs["base"]
|
57 |
+
dim = rope_kwargs["dim"]
|
58 |
+
elif config is not None:
|
59 |
+
base = config.rope_theta
|
60 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
61 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
62 |
+
dim = int(head_dim * partial_rotary_factor)
|
63 |
+
|
64 |
+
attention_factor = 1.0 # Unused in this type of RoPE
|
65 |
+
|
66 |
+
# Compute the inverse frequencies
|
67 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
|
68 |
+
return inv_freq, attention_factor
|
69 |
+
|
70 |
+
|
71 |
+
def _compute_linear_scaling_rope_parameters(
|
72 |
+
config: Optional[PretrainedConfig] = None,
|
73 |
+
device: Optional["torch.device"] = None,
|
74 |
+
seq_len: Optional[int] = None,
|
75 |
+
**rope_kwargs,
|
76 |
+
) -> Tuple["torch.Tensor", float]:
|
77 |
+
"""
|
78 |
+
Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev
|
79 |
+
Args:
|
80 |
+
config ([`~transformers.PretrainedConfig`]):
|
81 |
+
The model configuration.
|
82 |
+
device (`torch.device`):
|
83 |
+
The device to use for initialization of the inverse frequencies.
|
84 |
+
seq_len (`int`, *optional*):
|
85 |
+
The current sequence length. Unused for this type of RoPE.
|
86 |
+
rope_kwargs (`Dict`, *optional*):
|
87 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
88 |
+
Returns:
|
89 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
90 |
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
91 |
+
"""
|
92 |
+
if config is not None and len(rope_kwargs) > 0:
|
93 |
+
raise ValueError(
|
94 |
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
95 |
+
f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
96 |
+
)
|
97 |
+
if len(rope_kwargs) > 0:
|
98 |
+
factor = rope_kwargs["factor"]
|
99 |
+
elif config is not None:
|
100 |
+
factor = config.rope_scaling["factor"]
|
101 |
+
|
102 |
+
# Gets the default RoPE parameters
|
103 |
+
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
|
104 |
+
|
105 |
+
# Then applies linear scaling to the frequencies.
|
106 |
+
# NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so
|
107 |
+
# applying scaling to the inverse frequencies is equivalent.
|
108 |
+
inv_freq /= factor
|
109 |
+
return inv_freq, attention_factor
|
110 |
+
|
111 |
+
|
112 |
+
def _compute_dynamic_ntk_parameters(
|
113 |
+
config: Optional[PretrainedConfig] = None,
|
114 |
+
device: Optional["torch.device"] = None,
|
115 |
+
seq_len: Optional[int] = None,
|
116 |
+
**rope_kwargs,
|
117 |
+
) -> Tuple["torch.Tensor", float]:
|
118 |
+
"""
|
119 |
+
Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
|
120 |
+
Args:
|
121 |
+
config ([`~transformers.PretrainedConfig`]):
|
122 |
+
The model configuration.
|
123 |
+
device (`torch.device`):
|
124 |
+
The device to use for initialization of the inverse frequencies.
|
125 |
+
seq_len (`int`, *optional*):
|
126 |
+
The current sequence length, used to update the dynamic RoPE at inference time.
|
127 |
+
rope_kwargs (`Dict`, *optional*):
|
128 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
129 |
+
Returns:
|
130 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
131 |
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
132 |
+
"""
|
133 |
+
# TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
|
134 |
+
if config is not None and len(rope_kwargs) > 0:
|
135 |
+
raise ValueError(
|
136 |
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
137 |
+
f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
138 |
+
)
|
139 |
+
if len(rope_kwargs) > 0:
|
140 |
+
base = rope_kwargs["base"]
|
141 |
+
dim = rope_kwargs["dim"]
|
142 |
+
max_position_embeddings = rope_kwargs["max_position_embeddings"]
|
143 |
+
factor = rope_kwargs["factor"]
|
144 |
+
elif config is not None:
|
145 |
+
base = config.rope_theta
|
146 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
147 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
148 |
+
dim = int(head_dim * partial_rotary_factor)
|
149 |
+
max_position_embeddings = config.max_position_embeddings
|
150 |
+
factor = config.rope_scaling["factor"]
|
151 |
+
|
152 |
+
attention_factor = 1.0 # Unused in this type of RoPE
|
153 |
+
|
154 |
+
# seq_len: default to max_position_embeddings, e.g. at init time
|
155 |
+
seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings
|
156 |
+
|
157 |
+
# Compute the inverse frequencies
|
158 |
+
base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
|
159 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
|
160 |
+
return inv_freq, attention_factor
|
161 |
+
|
162 |
+
|
163 |
+
def _compute_yarn_parameters(
|
164 |
+
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
|
165 |
+
) -> Tuple["torch.Tensor", float]:
|
166 |
+
"""
|
167 |
+
Computes the inverse frequencies with NTK scaling. Please refer to the
|
168 |
+
[original paper](https://arxiv.org/abs/2309.00071)
|
169 |
+
Args:
|
170 |
+
config ([`~transformers.PretrainedConfig`]):
|
171 |
+
The model configuration.
|
172 |
+
device (`torch.device`):
|
173 |
+
The device to use for initialization of the inverse frequencies.
|
174 |
+
seq_len (`int`, *optional*):
|
175 |
+
The current sequence length. Unused for this type of RoPE.
|
176 |
+
rope_kwargs (`Dict`, *optional*):
|
177 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
178 |
+
Returns:
|
179 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
180 |
+
post-processing scaling factor applied to the computed cos/sin.
|
181 |
+
"""
|
182 |
+
# No need to keep BC with yarn, unreleased when this new pattern was created.
|
183 |
+
if len(rope_kwargs) > 0:
|
184 |
+
raise ValueError(
|
185 |
+
f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
|
186 |
+
)
|
187 |
+
|
188 |
+
base = config.rope_theta
|
189 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
190 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
191 |
+
dim = int(head_dim * partial_rotary_factor)
|
192 |
+
max_position_embeddings = config.max_position_embeddings
|
193 |
+
factor = config.rope_scaling["factor"]
|
194 |
+
|
195 |
+
# Sets the attention factor as suggested in the paper
|
196 |
+
attention_factor = config.rope_scaling.get("attention_factor")
|
197 |
+
if attention_factor is None:
|
198 |
+
attention_factor = 0.1 * math.log(factor) + 1.0
|
199 |
+
|
200 |
+
# Optional config options
|
201 |
+
# beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
|
202 |
+
beta_fast = config.rope_scaling.get("beta_fast") or 32
|
203 |
+
beta_slow = config.rope_scaling.get("beta_slow") or 1
|
204 |
+
|
205 |
+
# Compute the inverse frequencies
|
206 |
+
def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
|
207 |
+
"""Inverse dimension formula to find the dimension based on the number of rotations"""
|
208 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
|
209 |
+
|
210 |
+
def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
|
211 |
+
"""Find dimension range bounds based on rotations"""
|
212 |
+
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
|
213 |
+
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
|
214 |
+
return max(low, 0), min(high, dim - 1)
|
215 |
+
|
216 |
+
def linear_ramp_factor(min, max, dim):
|
217 |
+
if min == max:
|
218 |
+
max += 0.001 # Prevent singularity
|
219 |
+
|
220 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
221 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
222 |
+
return ramp_func
|
223 |
+
|
224 |
+
# Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
|
225 |
+
# to expand the possible context length. In other words, interpolation = apply scaling factor.
|
226 |
+
pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
|
227 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
228 |
+
inv_freq_interpolation = 1.0 / (factor * pos_freqs)
|
229 |
+
|
230 |
+
low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
|
231 |
+
|
232 |
+
# Get n-dimensional rotational scaling corrected for extrapolation
|
233 |
+
inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
|
234 |
+
inv_freq = (
|
235 |
+
inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
|
236 |
+
+ inv_freq_extrapolation * inv_freq_extrapolation_factor
|
237 |
+
)
|
238 |
+
|
239 |
+
return inv_freq, attention_factor
|
240 |
+
|
241 |
+
|
242 |
+
def _compute_longrope_parameters(
|
243 |
+
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
|
244 |
+
) -> Tuple["torch.Tensor", float]:
|
245 |
+
"""
|
246 |
+
Computes the inverse frequencies with LongRoPE scaling. Please refer to the
|
247 |
+
[original implementation](https://github.com/microsoft/LongRoPE)
|
248 |
+
Args:
|
249 |
+
config ([`~transformers.PretrainedConfig`]):
|
250 |
+
The model configuration.
|
251 |
+
device (`torch.device`):
|
252 |
+
The device to use for initialization of the inverse frequencies.
|
253 |
+
seq_len (`int`, *optional*):
|
254 |
+
The current sequence length. Unused for this type of RoPE.
|
255 |
+
rope_kwargs (`Dict`, *optional*):
|
256 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
257 |
+
Returns:
|
258 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
259 |
+
post-processing scaling factor applied to the computed cos/sin.
|
260 |
+
"""
|
261 |
+
# TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
|
262 |
+
# No need to keep BC with longrope, unreleased when this new pattern was created.
|
263 |
+
if len(rope_kwargs) > 0:
|
264 |
+
raise ValueError(
|
265 |
+
"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
|
266 |
+
f"{rope_kwargs}"
|
267 |
+
)
|
268 |
+
|
269 |
+
base = config.rope_theta
|
270 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
271 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
272 |
+
dim = int(head_dim * partial_rotary_factor)
|
273 |
+
long_factor = config.rope_scaling["long_factor"]
|
274 |
+
short_factor = config.rope_scaling["short_factor"]
|
275 |
+
factor = config.rope_scaling.get("factor")
|
276 |
+
attention_factor = config.rope_scaling.get("attention_factor")
|
277 |
+
|
278 |
+
# NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
|
279 |
+
# `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
|
280 |
+
# values to compute the default attention scaling factor, instead of using `factor`.
|
281 |
+
if hasattr(config, "original_max_position_embeddings"):
|
282 |
+
max_position_embeddings = config.original_max_position_embeddings
|
283 |
+
expanded_max_position_embeddings = config.max_position_embeddings
|
284 |
+
factor = expanded_max_position_embeddings / max_position_embeddings
|
285 |
+
else:
|
286 |
+
max_position_embeddings = config.max_position_embeddings
|
287 |
+
expanded_max_position_embeddings = max_position_embeddings * factor
|
288 |
+
|
289 |
+
# Sets the attention factor as suggested in the paper
|
290 |
+
if attention_factor is None:
|
291 |
+
if factor <= 1.0:
|
292 |
+
attention_factor = 1.0
|
293 |
+
else:
|
294 |
+
attention_factor = math.sqrt(1 + math.log(factor) / math.log(max_position_embeddings))
|
295 |
+
|
296 |
+
# Compute the inverse frequencies -- scaled based on the target sequence length
|
297 |
+
if expanded_max_position_embeddings > max_position_embeddings:
|
298 |
+
ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device)
|
299 |
+
else:
|
300 |
+
ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device)
|
301 |
+
inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim
|
302 |
+
inv_freq = 1.0 / (ext_factors * base**inv_freq_shape)
|
303 |
+
|
304 |
+
return inv_freq, attention_factor
|
305 |
+
|
306 |
+
|
307 |
+
def _compute_llama3_parameters(
|
308 |
+
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
|
309 |
+
) -> Tuple["torch.Tensor", float]:
|
310 |
+
"""
|
311 |
+
Computes the inverse frequencies for llama 3.1.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
config ([`~transformers.PretrainedConfig`]):
|
315 |
+
The model configuration.
|
316 |
+
device (`torch.device`):
|
317 |
+
The device to use for initialization of the inverse frequencies.
|
318 |
+
seq_len (`int`, *optional*):
|
319 |
+
The current sequence length. Unused for this type of RoPE.
|
320 |
+
rope_kwargs (`Dict`, *optional*):
|
321 |
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
322 |
+
Returns:
|
323 |
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
324 |
+
post-processing scaling factor applied to the computed cos/sin.
|
325 |
+
"""
|
326 |
+
# Gets the default RoPE parameters
|
327 |
+
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
|
328 |
+
|
329 |
+
factor = config.rope_scaling["factor"] # `8` in the original implementation
|
330 |
+
low_freq_factor = config.rope_scaling["low_freq_factor"] # `1` in the original implementation
|
331 |
+
high_freq_factor = config.rope_scaling["high_freq_factor"] # `4` in the original implementation
|
332 |
+
old_context_len = config.rope_scaling["original_max_position_embeddings"] # `8192` in the original implementation
|
333 |
+
|
334 |
+
low_freq_wavelen = old_context_len / low_freq_factor
|
335 |
+
high_freq_wavelen = old_context_len / high_freq_factor
|
336 |
+
|
337 |
+
wavelen = 2 * math.pi / inv_freq
|
338 |
+
# wavelen < high_freq_wavelen: do nothing
|
339 |
+
# wavelen > low_freq_wavelen: divide by factor
|
340 |
+
inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
|
341 |
+
# otherwise: interpolate between the two, using a smooth factor
|
342 |
+
smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
343 |
+
smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
|
344 |
+
is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
|
345 |
+
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
|
346 |
+
|
347 |
+
return inv_freq_llama, attention_factor
|
348 |
+
|
349 |
+
|
350 |
+
# This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
|
351 |
+
# from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
|
352 |
+
# parameterizations, as long as the callable has the same signature.
|
353 |
+
ROPE_INIT_FUNCTIONS = {
|
354 |
+
"default": _compute_default_rope_parameters,
|
355 |
+
"linear": _compute_linear_scaling_rope_parameters,
|
356 |
+
"dynamic": _compute_dynamic_ntk_parameters,
|
357 |
+
"yarn": _compute_yarn_parameters,
|
358 |
+
"longrope": _compute_longrope_parameters,
|
359 |
+
"llama3": _compute_llama3_parameters,
|
360 |
+
}
|
361 |
+
|
362 |
+
|
363 |
+
def _check_received_keys(rope_type: str, received_keys: set, required_keys: set, optional_keys: Optional[set] = None):
|
364 |
+
"""Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
|
365 |
+
# BC: "rope_type" was originally "type" -- let's gracefully handle it
|
366 |
+
if "rope_type" not in received_keys and "type" in received_keys:
|
367 |
+
received_keys -= {"type"}
|
368 |
+
received_keys.add("rope_type")
|
369 |
+
|
370 |
+
missing_keys = required_keys - received_keys
|
371 |
+
if missing_keys:
|
372 |
+
raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")
|
373 |
+
|
374 |
+
if optional_keys is not None:
|
375 |
+
unused_keys = received_keys - required_keys - optional_keys
|
376 |
+
else:
|
377 |
+
unused_keys = received_keys - required_keys
|
378 |
+
if unused_keys:
|
379 |
+
logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")
|
380 |
+
|
381 |
+
|
382 |
+
def _validate_default_rope_parameters(config: PretrainedConfig):
|
383 |
+
rope_scaling = config.rope_scaling
|
384 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
385 |
+
required_keys = {"rope_type"}
|
386 |
+
received_keys = set(rope_scaling.keys())
|
387 |
+
_check_received_keys(rope_type, received_keys, required_keys)
|
388 |
+
|
389 |
+
|
390 |
+
def _validate_linear_scaling_rope_parameters(config: PretrainedConfig):
|
391 |
+
rope_scaling = config.rope_scaling
|
392 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
393 |
+
required_keys = {"rope_type", "factor"}
|
394 |
+
received_keys = set(rope_scaling.keys())
|
395 |
+
_check_received_keys(rope_type, received_keys, required_keys)
|
396 |
+
|
397 |
+
factor = rope_scaling["factor"]
|
398 |
+
if factor is None or not isinstance(factor, float) or factor < 1.0:
|
399 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
400 |
+
|
401 |
+
|
402 |
+
def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig):
|
403 |
+
rope_scaling = config.rope_scaling
|
404 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
405 |
+
required_keys = {"rope_type", "factor"}
|
406 |
+
# TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
|
407 |
+
optional_keys = {"original_max_position_embeddings"}
|
408 |
+
received_keys = set(rope_scaling.keys())
|
409 |
+
_check_received_keys(rope_type, received_keys, required_keys, optional_keys)
|
410 |
+
|
411 |
+
factor = rope_scaling["factor"]
|
412 |
+
if factor is None or not isinstance(factor, float) or factor < 1.0:
|
413 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
414 |
+
|
415 |
+
|
416 |
+
def _validate_yarn_parameters(config: PretrainedConfig):
|
417 |
+
rope_scaling = config.rope_scaling
|
418 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
419 |
+
required_keys = {"rope_type", "factor"}
|
420 |
+
optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
|
421 |
+
received_keys = set(rope_scaling.keys())
|
422 |
+
_check_received_keys(rope_type, received_keys, required_keys, optional_keys)
|
423 |
+
|
424 |
+
factor = rope_scaling["factor"]
|
425 |
+
if factor is None or not isinstance(factor, float) or factor < 1.0:
|
426 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
427 |
+
|
428 |
+
attention_factor = rope_scaling.get("attention_factor")
|
429 |
+
if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
|
430 |
+
logger.warning(
|
431 |
+
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
|
432 |
+
)
|
433 |
+
beta_fast = rope_scaling.get("beta_fast")
|
434 |
+
if beta_fast is not None and not isinstance(beta_fast, float):
|
435 |
+
logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
|
436 |
+
beta_slow = rope_scaling.get("beta_slow")
|
437 |
+
if beta_slow is not None and not isinstance(beta_slow, float):
|
438 |
+
logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")
|
439 |
+
|
440 |
+
if (beta_fast or 32) < (beta_slow or 1):
|
441 |
+
logger.warning(
|
442 |
+
f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
|
443 |
+
f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
|
444 |
+
)
|
445 |
+
|
446 |
+
|
447 |
+
def _validate_longrope_parameters(config: PretrainedConfig):
|
448 |
+
rope_scaling = config.rope_scaling
|
449 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
450 |
+
required_keys = {"rope_type", "short_factor", "long_factor"}
|
451 |
+
# TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
|
452 |
+
optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"}
|
453 |
+
received_keys = set(rope_scaling.keys())
|
454 |
+
_check_received_keys(rope_type, received_keys, required_keys, optional_keys)
|
455 |
+
|
456 |
+
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
|
457 |
+
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
458 |
+
dim = int(head_dim * partial_rotary_factor)
|
459 |
+
|
460 |
+
short_factor = rope_scaling.get("short_factor")
|
461 |
+
if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
|
462 |
+
logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}")
|
463 |
+
if not len(short_factor) == dim // 2:
|
464 |
+
logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}")
|
465 |
+
|
466 |
+
long_factor = rope_scaling.get("long_factor")
|
467 |
+
if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor):
|
468 |
+
logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}")
|
469 |
+
if not len(long_factor) == dim // 2:
|
470 |
+
logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}")
|
471 |
+
|
472 |
+
# Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over
|
473 |
+
# `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is
|
474 |
+
# unique to longrope (= undesirable)
|
475 |
+
if hasattr(config, "original_max_position_embeddings"):
|
476 |
+
logger.warning_once(
|
477 |
+
"This model has set a `original_max_position_embeddings` field, to be used together with "
|
478 |
+
"`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`"
|
479 |
+
"with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, "
|
480 |
+
"as it is compatible with most model architectures."
|
481 |
+
)
|
482 |
+
else:
|
483 |
+
factor = rope_scaling.get("factor")
|
484 |
+
if factor is None:
|
485 |
+
logger.warning("Missing required keys in `rope_scaling`: 'factor'")
|
486 |
+
elif not isinstance(factor, float) or factor < 1.0:
|
487 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
488 |
+
|
489 |
+
attention_factor = rope_scaling.get("attention_factor")
|
490 |
+
if attention_factor is not None and not isinstance(attention_factor, float) or attention_factor < 0:
|
491 |
+
logger.warning(
|
492 |
+
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
|
493 |
+
)
|
494 |
+
|
495 |
+
|
496 |
+
def _validate_llama3_parameters(config: PretrainedConfig):
|
497 |
+
rope_scaling = config.rope_scaling
|
498 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
|
499 |
+
required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"}
|
500 |
+
received_keys = set(rope_scaling.keys())
|
501 |
+
_check_received_keys(rope_type, received_keys, required_keys)
|
502 |
+
|
503 |
+
factor = rope_scaling["factor"]
|
504 |
+
if factor is None or not isinstance(factor, float) or factor < 1.0:
|
505 |
+
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
|
506 |
+
|
507 |
+
low_freq_factor = rope_scaling["low_freq_factor"]
|
508 |
+
high_freq_factor = rope_scaling["high_freq_factor"]
|
509 |
+
if low_freq_factor is None or not isinstance(low_freq_factor, float):
|
510 |
+
logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}")
|
511 |
+
if high_freq_factor is None or not isinstance(high_freq_factor, float):
|
512 |
+
logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}")
|
513 |
+
if high_freq_factor <= low_freq_factor:
|
514 |
+
logger.warning(
|
515 |
+
"`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor="
|
516 |
+
f"{high_freq_factor} and low_freq_factor={low_freq_factor}"
|
517 |
+
)
|
518 |
+
|
519 |
+
original_max_position_embeddings = rope_scaling["original_max_position_embeddings"]
|
520 |
+
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
|
521 |
+
logger.warning(
|
522 |
+
"`rope_scaling`'s original_max_position_embeddings field must be an integer, got "
|
523 |
+
f"{original_max_position_embeddings}"
|
524 |
+
)
|
525 |
+
if original_max_position_embeddings >= config.max_position_embeddings:
|
526 |
+
logger.warning(
|
527 |
+
"`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got "
|
528 |
+
f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}"
|
529 |
+
)
|
530 |
+
|
531 |
+
|
532 |
+
# Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
|
533 |
+
ROPE_VALIDATION_FUNCTIONS = {
|
534 |
+
"default": _validate_default_rope_parameters,
|
535 |
+
"linear": _validate_linear_scaling_rope_parameters,
|
536 |
+
"dynamic": _validate_dynamic_scaling_rope_parameters,
|
537 |
+
"yarn": _validate_yarn_parameters,
|
538 |
+
"longrope": _validate_longrope_parameters,
|
539 |
+
"llama3": _validate_llama3_parameters,
|
540 |
+
}
|
541 |
+
|
542 |
+
|
543 |
+
def rope_config_validation(config: PretrainedConfig):
|
544 |
+
"""
|
545 |
+
Validate the RoPE config arguments, given a `PretrainedConfig` object
|
546 |
+
"""
|
547 |
+
rope_scaling = getattr(config, "rope_scaling", None) # not a default parameter in `PretrainedConfig`
|
548 |
+
if rope_scaling is None:
|
549 |
+
return
|
550 |
+
|
551 |
+
# BC: "rope_type" was originally "type"
|
552 |
+
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
|
553 |
+
validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
|
554 |
+
if validation_fn is not None:
|
555 |
+
validation_fn(config)
|
556 |
+
else:
|
557 |
+
logger.warning(
|
558 |
+
f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
|
559 |
+
)
|
transformers_4_44_2__pytorch_utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from torch import nn
|
16 |
+
|
17 |
+
ALL_LAYERNORM_LAYERS = [nn.LayerNorm]
|
variable_cache.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Nvidia Corporation. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from copy import deepcopy
|
17 |
+
from typing import Optional, Dict, Any, Tuple
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from transformers.cache_utils import Cache # used to let GenerationMixin know that we use a Cache object
|
21 |
+
|
22 |
+
from .configuration_decilm import DeciLMConfig
|
23 |
+
from .transformers_4_44_2__cache_utils import Cache as Cache_4_44_2, SinkCache, StaticCache, SlidingWindowCache
|
24 |
+
|
25 |
+
|
26 |
+
class VariableCache(Cache_4_44_2, Cache):
|
27 |
+
"""
|
28 |
+
A Cache object that supports a different Cache implementation for every layer,
|
29 |
+
including layers without any kv-cache.
|
30 |
+
Implemented using a list of Cache objects, each represents a "model" with 1 layer.
|
31 |
+
The default implementation for the layer caches is StaticCache.
|
32 |
+
The cache of each layer is allocated to the same gpu as the layer itself.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
*, # key-word only, no positional args allowed to avoid mix-ups with newer transformers versions
|
38 |
+
config: DeciLMConfig,
|
39 |
+
batch_size: int = None,
|
40 |
+
max_cache_len: int = None,
|
41 |
+
dtype: torch.dtype = torch.float32,
|
42 |
+
max_batch_size: Optional[int] = None,
|
43 |
+
**kwargs,
|
44 |
+
) -> None:
|
45 |
+
Cache_4_44_2.__init__(self)
|
46 |
+
|
47 |
+
self.config = deepcopy(config)
|
48 |
+
self.max_batch_size = batch_size or max_batch_size
|
49 |
+
self.batch_size = self.max_batch_size
|
50 |
+
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
|
51 |
+
self.dtype = dtype
|
52 |
+
|
53 |
+
self.layer_caches: list[Cache_4_44_2 | None] = [None] * config.num_hidden_layers
|
54 |
+
self.layer_devices: list[torch.device | None] = [None] * config.num_hidden_layers
|
55 |
+
|
56 |
+
def update(
|
57 |
+
self,
|
58 |
+
key_states: torch.Tensor,
|
59 |
+
value_states: torch.Tensor,
|
60 |
+
layer_idx: int,
|
61 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
62 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
63 |
+
if self.layer_caches[layer_idx] is None:
|
64 |
+
self.layer_devices[layer_idx] = key_states.device
|
65 |
+
self._init_layer_cache(layer_idx)
|
66 |
+
|
67 |
+
layer_cache = self.layer_caches[layer_idx]
|
68 |
+
assert layer_cache is not None, f"Trying to update the cache of a cache-less layer: {layer_idx=}"
|
69 |
+
|
70 |
+
k_out, v_out = layer_cache.update(key_states=key_states,
|
71 |
+
value_states=value_states,
|
72 |
+
layer_idx=0,
|
73 |
+
cache_kwargs=cache_kwargs)
|
74 |
+
seq_len = self.get_seq_length(layer_idx)
|
75 |
+
k_out = k_out[:, :, :seq_len, :]
|
76 |
+
v_out = v_out[:, :, :seq_len, :]
|
77 |
+
return k_out, v_out
|
78 |
+
|
79 |
+
def _init_layer_cache(self, layer_idx: int) -> None:
|
80 |
+
block_config = self.config.block_configs[layer_idx]
|
81 |
+
attention_config = block_config.attention
|
82 |
+
|
83 |
+
if attention_config.no_op or attention_config.replace_with_linear:
|
84 |
+
return None
|
85 |
+
|
86 |
+
device = self.layer_devices[layer_idx]
|
87 |
+
assert device is not None, f"Trying to init layer cache for {layer_idx=} without device"
|
88 |
+
|
89 |
+
config = deepcopy(self.config)
|
90 |
+
config.num_hidden_layers = 1
|
91 |
+
config.num_key_value_heads = self.config.num_attention_heads // attention_config.n_heads_in_group
|
92 |
+
|
93 |
+
if attention_config.window_length is not None:
|
94 |
+
if not attention_config.is_sink:
|
95 |
+
config.sliding_window = attention_config.window_length
|
96 |
+
self.layer_caches[layer_idx] = SlidingWindowCache(config=config,
|
97 |
+
max_batch_size=self.max_batch_size,
|
98 |
+
max_cache_len=self.max_cache_len,
|
99 |
+
device=device,
|
100 |
+
dtype=self.dtype)
|
101 |
+
return
|
102 |
+
elif not attention_config.unshifted_sink:
|
103 |
+
self.layer_caches[layer_idx] = SinkCache(window_length=attention_config.window_length,
|
104 |
+
num_sink_tokens=attention_config.num_sink_tokens)
|
105 |
+
return
|
106 |
+
|
107 |
+
self.layer_caches[layer_idx] = StaticCache(config=config,
|
108 |
+
max_batch_size=self.max_batch_size,
|
109 |
+
max_cache_len=self.max_cache_len,
|
110 |
+
device=device,
|
111 |
+
dtype=self.dtype)
|
112 |
+
|
113 |
+
def _get_first_real_cache(self) -> Cache:
|
114 |
+
for layer_cache in self.layer_caches:
|
115 |
+
if layer_cache is not None:
|
116 |
+
return layer_cache
|
117 |
+
raise ValueError(f"No real cache found, all layer caches are None.")
|
118 |
+
|
119 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
120 |
+
if layer_idx == 0 and self.layer_caches[0] is None:
|
121 |
+
try:
|
122 |
+
layer_cache = self._get_first_real_cache()
|
123 |
+
except ValueError:
|
124 |
+
return 0
|
125 |
+
else:
|
126 |
+
layer_cache = self.layer_caches[layer_idx]
|
127 |
+
return layer_cache.get_seq_length()
|
128 |
+
|
129 |
+
def get_max_length(self) -> Optional[int]:
|
130 |
+
"""Returns the maximum sequence length of the cached states."""
|
131 |
+
return self.max_cache_len
|
132 |
+
|
133 |
+
def reset(self):
|
134 |
+
for layer_idx in range(len(self.layer_caches)):
|
135 |
+
layer_cache = self.layer_caches[layer_idx]
|
136 |
+
if hasattr(layer_cache, "reset"):
|
137 |
+
layer_cache.reset()
|
138 |
+
else:
|
139 |
+
self._init_layer_cache(layer_idx)
|