# coding=utf-8 # Copyright 2024 Nvidia Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import warnings from typing import Dict, Any from transformers.utils import is_flash_attn_2_available from .block_config import BlockConfig from .transformers_4_44_2__configuration_llama import LlamaConfig from .transformers_4_44_2__modeling_rope_utils import \ rope_config_validation # fake import to make AutoConfig infer the dependency rope_config_validation # this line is here to make sure that auto-formatting doesn't remove the import class DeciLMConfig(LlamaConfig): model_type = "nemotron-nas" def __init__( self, block_configs: list[dict] | list[BlockConfig] = None, **kwargs, ): attn_implementation = kwargs.pop("attn_implementation", None) if attn_implementation is None and is_flash_attn_2_available(): attn_implementation = "flash_attention_2" if block_configs is not None: if isinstance(block_configs[0], dict): block_configs = [BlockConfig(**conf) for conf in block_configs] using_unshifted_sink = any([block_config.attention.unshifted_sink for block_config in block_configs]) if using_unshifted_sink and attn_implementation != "eager": warnings.warn("Forcing attn_implementation='eager' since some attention layers use unshifted sink") attn_implementation = "eager" super().__init__(attn_implementation=attn_implementation, **kwargs) self.intermediate_size = None self.num_key_value_heads = None if block_configs is not None: assert len(block_configs) == self.num_hidden_layers self.block_configs: list[BlockConfig] = block_configs def to_dict(self) -> Dict[str, Any]: self_dict = super().to_dict() if self.block_configs is not None: self_dict["block_configs"] = [dataclasses.asdict(conf) for conf in self.block_configs] return self_dict