Create mamba_vision.py
Browse files- mamba_vision.py +865 -0
mamba_vision.py
ADDED
@@ -0,0 +1,865 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
6 |
+
# and proprietary rights in and to this software, related documentation
|
7 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
8 |
+
# distribution of this software and related documentation without an express
|
9 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
10 |
+
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from timm.models.registry import register_model
|
15 |
+
import math
|
16 |
+
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
|
17 |
+
from timm.models._builder import resolve_pretrained_cfg
|
18 |
+
try:
|
19 |
+
from timm.models._builder import _update_default_kwargs as update_args
|
20 |
+
except:
|
21 |
+
from timm.models._builder import _update_default_model_kwargs as update_args
|
22 |
+
from timm.models.vision_transformer import Mlp, PatchEmbed
|
23 |
+
from timm.models.layers import DropPath, trunc_normal_
|
24 |
+
from timm.models.registry import register_model
|
25 |
+
import torch.nn.functional as F
|
26 |
+
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
|
27 |
+
from einops import rearrange, repeat
|
28 |
+
from pathlib import Path
|
29 |
+
from huggingface_hub import PyTorchModelHubMixin
|
30 |
+
|
31 |
+
|
32 |
+
def _cfg(url='', **kwargs):
|
33 |
+
return {'url': url,
|
34 |
+
'num_classes': 1000,
|
35 |
+
'input_size': (3, 224, 224),
|
36 |
+
'pool_size': None,
|
37 |
+
'crop_pct': 0.875,
|
38 |
+
'interpolation': 'bicubic',
|
39 |
+
'fixed_input_size': True,
|
40 |
+
'mean': (0.485, 0.456, 0.406),
|
41 |
+
'std': (0.229, 0.224, 0.225),
|
42 |
+
**kwargs
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
default_cfgs = {
|
47 |
+
'mamba_vision_T': _cfg(url='https://huggingface.co/nvidia/MambaVision-T-1K/resolve/main/mambavision_tiny_1k.pth.tar',
|
48 |
+
crop_pct=1.0,
|
49 |
+
input_size=(3, 224, 224),
|
50 |
+
crop_mode='center'),
|
51 |
+
'mamba_vision_T2': _cfg(url='https://huggingface.co/nvidia/MambaVision-T2-1K/resolve/main/mambavision_tiny2_1k.pth.tar',
|
52 |
+
crop_pct=0.98,
|
53 |
+
input_size=(3, 224, 224),
|
54 |
+
crop_mode='center'),
|
55 |
+
'mamba_vision_S': _cfg(url='https://huggingface.co/nvidia/MambaVision-S-1K/resolve/main/mambavision_small_1k.pth.tar',
|
56 |
+
crop_pct=0.93,
|
57 |
+
input_size=(3, 224, 224),
|
58 |
+
crop_mode='center'),
|
59 |
+
'mamba_vision_B': _cfg(url='https://huggingface.co/nvidia/MambaVision-B-1K/resolve/main/mambavision_base_1k.pth.tar',
|
60 |
+
crop_pct=1.0,
|
61 |
+
input_size=(3, 224, 224),
|
62 |
+
crop_mode='center'),
|
63 |
+
'mamba_vision_L': _cfg(url='https://huggingface.co/nvidia/MambaVision-L-1K/resolve/main/mambavision_large_1k.pth.tar',
|
64 |
+
crop_pct=1.0,
|
65 |
+
input_size=(3, 224, 224),
|
66 |
+
crop_mode='center'),
|
67 |
+
'mamba_vision_L2': _cfg(url='https://huggingface.co/nvidia/MambaVision-L2-1K/resolve/main/mambavision_large2_1k.pth.tar',
|
68 |
+
crop_pct=1.0,
|
69 |
+
input_size=(3, 224, 224),
|
70 |
+
crop_mode='center')
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
def window_partition(x, window_size):
|
75 |
+
"""
|
76 |
+
Args:
|
77 |
+
x: (B, C, H, W)
|
78 |
+
window_size: window size
|
79 |
+
h_w: Height of window
|
80 |
+
w_w: Width of window
|
81 |
+
Returns:
|
82 |
+
local window features (num_windows*B, window_size*window_size, C)
|
83 |
+
"""
|
84 |
+
B, C, H, W = x.shape
|
85 |
+
x = x.view(B, C, H // window_size, window_size, W // window_size, window_size)
|
86 |
+
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
|
87 |
+
return windows
|
88 |
+
|
89 |
+
|
90 |
+
def window_reverse(windows, window_size, H, W):
|
91 |
+
"""
|
92 |
+
Args:
|
93 |
+
windows: local window features (num_windows*B, window_size, window_size, C)
|
94 |
+
window_size: Window size
|
95 |
+
H: Height of image
|
96 |
+
W: Width of image
|
97 |
+
Returns:
|
98 |
+
x: (B, C, H, W)
|
99 |
+
"""
|
100 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
101 |
+
x = windows.reshape(B, H // window_size, W // window_size, window_size, window_size, -1)
|
102 |
+
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], H, W)
|
103 |
+
return x
|
104 |
+
|
105 |
+
|
106 |
+
def _load_state_dict(module, state_dict, strict=False, logger=None):
|
107 |
+
"""Load state_dict to a module.
|
108 |
+
|
109 |
+
This method is modified from :meth:`torch.nn.Module.load_state_dict`.
|
110 |
+
Default value for ``strict`` is set to ``False`` and the message for
|
111 |
+
param mismatch will be shown even if strict is False.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
module (Module): Module that receives the state_dict.
|
115 |
+
state_dict (OrderedDict): Weights.
|
116 |
+
strict (bool): whether to strictly enforce that the keys
|
117 |
+
in :attr:`state_dict` match the keys returned by this module's
|
118 |
+
:meth:`~torch.nn.Module.state_dict` function. Default: ``False``.
|
119 |
+
logger (:obj:`logging.Logger`, optional): Logger to log the error
|
120 |
+
message. If not specified, print function will be used.
|
121 |
+
"""
|
122 |
+
unexpected_keys = []
|
123 |
+
all_missing_keys = []
|
124 |
+
err_msg = []
|
125 |
+
|
126 |
+
metadata = getattr(state_dict, '_metadata', None)
|
127 |
+
state_dict = state_dict.copy()
|
128 |
+
if metadata is not None:
|
129 |
+
state_dict._metadata = metadata
|
130 |
+
|
131 |
+
def load(module, prefix=''):
|
132 |
+
local_metadata = {} if metadata is None else metadata.get(
|
133 |
+
prefix[:-1], {})
|
134 |
+
module._load_from_state_dict(state_dict, prefix, local_metadata, True,
|
135 |
+
all_missing_keys, unexpected_keys,
|
136 |
+
err_msg)
|
137 |
+
for name, child in module._modules.items():
|
138 |
+
if child is not None:
|
139 |
+
load(child, prefix + name + '.')
|
140 |
+
|
141 |
+
load(module)
|
142 |
+
load = None
|
143 |
+
missing_keys = [
|
144 |
+
key for key in all_missing_keys if 'num_batches_tracked' not in key
|
145 |
+
]
|
146 |
+
|
147 |
+
if unexpected_keys:
|
148 |
+
err_msg.append('unexpected key in source '
|
149 |
+
f'state_dict: {", ".join(unexpected_keys)}\n')
|
150 |
+
if missing_keys:
|
151 |
+
err_msg.append(
|
152 |
+
f'missing keys in source state_dict: {", ".join(missing_keys)}\n')
|
153 |
+
|
154 |
+
|
155 |
+
if len(err_msg) > 0:
|
156 |
+
err_msg.insert(
|
157 |
+
0, 'The model and loaded state dict do not match exactly\n')
|
158 |
+
err_msg = '\n'.join(err_msg)
|
159 |
+
if strict:
|
160 |
+
raise RuntimeError(err_msg)
|
161 |
+
elif logger is not None:
|
162 |
+
logger.warning(err_msg)
|
163 |
+
else:
|
164 |
+
print(err_msg)
|
165 |
+
|
166 |
+
|
167 |
+
def _load_checkpoint(model,
|
168 |
+
filename,
|
169 |
+
map_location='cpu',
|
170 |
+
strict=False,
|
171 |
+
logger=None):
|
172 |
+
"""Load checkpoint from a file or URI.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
model (Module): Module to load checkpoint.
|
176 |
+
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
|
177 |
+
``open-mmlab://xxx``. Please refer to ``docs/model_zoo.md`` for
|
178 |
+
details.
|
179 |
+
map_location (str): Same as :func:`torch.load`.
|
180 |
+
strict (bool): Whether to allow different params for the model and
|
181 |
+
checkpoint.
|
182 |
+
logger (:mod:`logging.Logger` or None): The logger for error message.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
dict or OrderedDict: The loaded checkpoint.
|
186 |
+
"""
|
187 |
+
checkpoint = torch.load(filename, map_location=map_location)
|
188 |
+
if not isinstance(checkpoint, dict):
|
189 |
+
raise RuntimeError(
|
190 |
+
f'No state_dict found in checkpoint file {filename}')
|
191 |
+
if 'state_dict' in checkpoint:
|
192 |
+
state_dict = checkpoint['state_dict']
|
193 |
+
elif 'model' in checkpoint:
|
194 |
+
state_dict = checkpoint['model']
|
195 |
+
else:
|
196 |
+
state_dict = checkpoint
|
197 |
+
if list(state_dict.keys())[0].startswith('module.'):
|
198 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
199 |
+
|
200 |
+
if sorted(list(state_dict.keys()))[0].startswith('encoder'):
|
201 |
+
state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items() if k.startswith('encoder.')}
|
202 |
+
|
203 |
+
_load_state_dict(model, state_dict, strict, logger)
|
204 |
+
return checkpoint
|
205 |
+
|
206 |
+
|
207 |
+
class Downsample(nn.Module):
|
208 |
+
"""
|
209 |
+
Down-sampling block"
|
210 |
+
"""
|
211 |
+
|
212 |
+
def __init__(self,
|
213 |
+
dim,
|
214 |
+
keep_dim=False,
|
215 |
+
):
|
216 |
+
"""
|
217 |
+
Args:
|
218 |
+
dim: feature size dimension.
|
219 |
+
norm_layer: normalization layer.
|
220 |
+
keep_dim: bool argument for maintaining the resolution.
|
221 |
+
"""
|
222 |
+
|
223 |
+
super().__init__()
|
224 |
+
if keep_dim:
|
225 |
+
dim_out = dim
|
226 |
+
else:
|
227 |
+
dim_out = 2 * dim
|
228 |
+
self.reduction = nn.Sequential(
|
229 |
+
nn.Conv2d(dim, dim_out, 3, 2, 1, bias=False),
|
230 |
+
)
|
231 |
+
|
232 |
+
def forward(self, x):
|
233 |
+
x = self.reduction(x)
|
234 |
+
return x
|
235 |
+
|
236 |
+
|
237 |
+
class PatchEmbed(nn.Module):
|
238 |
+
"""
|
239 |
+
Patch embedding block"
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(self, in_chans=3, in_dim=64, dim=96):
|
243 |
+
"""
|
244 |
+
Args:
|
245 |
+
in_chans: number of input channels.
|
246 |
+
dim: feature size dimension.
|
247 |
+
"""
|
248 |
+
# in_dim = 1
|
249 |
+
super().__init__()
|
250 |
+
self.proj = nn.Identity()
|
251 |
+
self.conv_down = nn.Sequential(
|
252 |
+
nn.Conv2d(in_chans, in_dim, 3, 2, 1, bias=False),
|
253 |
+
nn.BatchNorm2d(in_dim, eps=1e-4),
|
254 |
+
nn.ReLU(),
|
255 |
+
nn.Conv2d(in_dim, dim, 3, 2, 1, bias=False),
|
256 |
+
nn.BatchNorm2d(dim, eps=1e-4),
|
257 |
+
nn.ReLU()
|
258 |
+
)
|
259 |
+
|
260 |
+
def forward(self, x):
|
261 |
+
x = self.proj(x)
|
262 |
+
x = self.conv_down(x)
|
263 |
+
return x
|
264 |
+
|
265 |
+
|
266 |
+
class ConvBlock(nn.Module):
|
267 |
+
|
268 |
+
def __init__(self, dim,
|
269 |
+
drop_path=0.,
|
270 |
+
layer_scale=None,
|
271 |
+
kernel_size=3):
|
272 |
+
super().__init__()
|
273 |
+
|
274 |
+
self.conv1 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
275 |
+
self.norm1 = nn.BatchNorm2d(dim, eps=1e-5)
|
276 |
+
self.act1 = nn.GELU(approximate= 'tanh')
|
277 |
+
self.conv2 = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
278 |
+
self.norm2 = nn.BatchNorm2d(dim, eps=1e-5)
|
279 |
+
self.layer_scale = layer_scale
|
280 |
+
if layer_scale is not None and type(layer_scale) in [int, float]:
|
281 |
+
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
|
282 |
+
self.layer_scale = True
|
283 |
+
else:
|
284 |
+
self.layer_scale = False
|
285 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
286 |
+
|
287 |
+
def forward(self, x):
|
288 |
+
input = x
|
289 |
+
x = self.conv1(x)
|
290 |
+
x = self.norm1(x)
|
291 |
+
x = self.act1(x)
|
292 |
+
x = self.conv2(x)
|
293 |
+
x = self.norm2(x)
|
294 |
+
if self.layer_scale:
|
295 |
+
x = x * self.gamma.view(1, -1, 1, 1)
|
296 |
+
x = input + self.drop_path(x)
|
297 |
+
return x
|
298 |
+
|
299 |
+
|
300 |
+
class MambaVisionMixer(nn.Module):
|
301 |
+
def __init__(
|
302 |
+
self,
|
303 |
+
d_model,
|
304 |
+
d_state=16,
|
305 |
+
d_conv=4,
|
306 |
+
expand=2,
|
307 |
+
dt_rank="auto",
|
308 |
+
dt_min=0.001,
|
309 |
+
dt_max=0.1,
|
310 |
+
dt_init="random",
|
311 |
+
dt_scale=1.0,
|
312 |
+
dt_init_floor=1e-4,
|
313 |
+
conv_bias=True,
|
314 |
+
bias=False,
|
315 |
+
use_fast_path=True,
|
316 |
+
layer_idx=None,
|
317 |
+
device=None,
|
318 |
+
dtype=None,
|
319 |
+
):
|
320 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
321 |
+
super().__init__()
|
322 |
+
self.d_model = d_model
|
323 |
+
self.d_state = d_state
|
324 |
+
self.d_conv = d_conv
|
325 |
+
self.expand = expand
|
326 |
+
self.d_inner = int(self.expand * self.d_model)
|
327 |
+
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
|
328 |
+
self.use_fast_path = use_fast_path
|
329 |
+
self.layer_idx = layer_idx
|
330 |
+
self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs)
|
331 |
+
self.x_proj = nn.Linear(
|
332 |
+
self.d_inner//2, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
|
333 |
+
)
|
334 |
+
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner//2, bias=True, **factory_kwargs)
|
335 |
+
dt_init_std = self.dt_rank**-0.5 * dt_scale
|
336 |
+
if dt_init == "constant":
|
337 |
+
nn.init.constant_(self.dt_proj.weight, dt_init_std)
|
338 |
+
elif dt_init == "random":
|
339 |
+
nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
|
340 |
+
else:
|
341 |
+
raise NotImplementedError
|
342 |
+
dt = torch.exp(
|
343 |
+
torch.rand(self.d_inner//2, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
|
344 |
+
+ math.log(dt_min)
|
345 |
+
).clamp(min=dt_init_floor)
|
346 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
347 |
+
with torch.no_grad():
|
348 |
+
self.dt_proj.bias.copy_(inv_dt)
|
349 |
+
self.dt_proj.bias._no_reinit = True
|
350 |
+
A = repeat(
|
351 |
+
torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
|
352 |
+
"n -> d n",
|
353 |
+
d=self.d_inner//2,
|
354 |
+
).contiguous()
|
355 |
+
A_log = torch.log(A)
|
356 |
+
self.A_log = nn.Parameter(A_log)
|
357 |
+
self.A_log._no_weight_decay = True
|
358 |
+
self.D = nn.Parameter(torch.ones(self.d_inner//2, device=device))
|
359 |
+
self.D._no_weight_decay = True
|
360 |
+
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
361 |
+
self.conv1d_x = nn.Conv1d(
|
362 |
+
in_channels=self.d_inner//2,
|
363 |
+
out_channels=self.d_inner//2,
|
364 |
+
bias=conv_bias//2,
|
365 |
+
kernel_size=d_conv,
|
366 |
+
groups=self.d_inner//2,
|
367 |
+
**factory_kwargs,
|
368 |
+
)
|
369 |
+
self.conv1d_z = nn.Conv1d(
|
370 |
+
in_channels=self.d_inner//2,
|
371 |
+
out_channels=self.d_inner//2,
|
372 |
+
bias=conv_bias//2,
|
373 |
+
kernel_size=d_conv,
|
374 |
+
groups=self.d_inner//2,
|
375 |
+
**factory_kwargs,
|
376 |
+
)
|
377 |
+
|
378 |
+
def forward(self, hidden_states):
|
379 |
+
"""
|
380 |
+
hidden_states: (B, L, D)
|
381 |
+
Returns: same shape as hidden_states
|
382 |
+
"""
|
383 |
+
_, seqlen, _ = hidden_states.shape
|
384 |
+
xz = self.in_proj(hidden_states)
|
385 |
+
xz = rearrange(xz, "b l d -> b d l")
|
386 |
+
x, z = xz.chunk(2, dim=1)
|
387 |
+
A = -torch.exp(self.A_log.float())
|
388 |
+
x = F.silu(F.conv1d(input=x, weight=self.conv1d_x.weight, bias=self.conv1d_x.bias, padding='same', groups=self.d_inner//2))
|
389 |
+
z = F.silu(F.conv1d(input=z, weight=self.conv1d_z.weight, bias=self.conv1d_z.bias, padding='same', groups=self.d_inner//2))
|
390 |
+
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d"))
|
391 |
+
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
|
392 |
+
dt = rearrange(self.dt_proj(dt), "(b l) d -> b d l", l=seqlen)
|
393 |
+
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
394 |
+
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
395 |
+
y = selective_scan_fn(x,
|
396 |
+
dt,
|
397 |
+
A,
|
398 |
+
B,
|
399 |
+
C,
|
400 |
+
self.D.float(),
|
401 |
+
z=None,
|
402 |
+
delta_bias=self.dt_proj.bias.float(),
|
403 |
+
delta_softplus=True,
|
404 |
+
return_last_state=None)
|
405 |
+
|
406 |
+
y = torch.cat([y, z], dim=1)
|
407 |
+
y = rearrange(y, "b d l -> b l d")
|
408 |
+
out = self.out_proj(y)
|
409 |
+
return out
|
410 |
+
|
411 |
+
|
412 |
+
class Attention(nn.Module):
|
413 |
+
|
414 |
+
def __init__(
|
415 |
+
self,
|
416 |
+
dim,
|
417 |
+
num_heads=8,
|
418 |
+
qkv_bias=False,
|
419 |
+
qk_norm=False,
|
420 |
+
attn_drop=0.,
|
421 |
+
proj_drop=0.,
|
422 |
+
norm_layer=nn.LayerNorm,
|
423 |
+
):
|
424 |
+
super().__init__()
|
425 |
+
assert dim % num_heads == 0
|
426 |
+
self.num_heads = num_heads
|
427 |
+
self.head_dim = dim // num_heads
|
428 |
+
self.scale = self.head_dim ** -0.5
|
429 |
+
self.fused_attn = True
|
430 |
+
|
431 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
432 |
+
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
433 |
+
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
434 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
435 |
+
self.proj = nn.Linear(dim, dim)
|
436 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
437 |
+
|
438 |
+
def forward(self, x):
|
439 |
+
B, N, C = x.shape
|
440 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
|
441 |
+
q, k, v = qkv.unbind(0)
|
442 |
+
q, k = self.q_norm(q), self.k_norm(k)
|
443 |
+
|
444 |
+
if self.fused_attn:
|
445 |
+
x = F.scaled_dot_product_attention(
|
446 |
+
q, k, v,
|
447 |
+
dropout_p=self.attn_drop.p,
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
q = q * self.scale
|
451 |
+
attn = q @ k.transpose(-2, -1)
|
452 |
+
attn = attn.softmax(dim=-1)
|
453 |
+
attn = self.attn_drop(attn)
|
454 |
+
x = attn @ v
|
455 |
+
|
456 |
+
x = x.transpose(1, 2).reshape(B, N, C)
|
457 |
+
x = self.proj(x)
|
458 |
+
x = self.proj_drop(x)
|
459 |
+
return x
|
460 |
+
|
461 |
+
|
462 |
+
class Block(nn.Module):
|
463 |
+
def __init__(self,
|
464 |
+
dim,
|
465 |
+
num_heads,
|
466 |
+
counter,
|
467 |
+
transformer_blocks,
|
468 |
+
mlp_ratio=4.,
|
469 |
+
qkv_bias=False,
|
470 |
+
qk_scale=False,
|
471 |
+
drop=0.,
|
472 |
+
attn_drop=0.,
|
473 |
+
drop_path=0.,
|
474 |
+
act_layer=nn.GELU,
|
475 |
+
norm_layer=nn.LayerNorm,
|
476 |
+
Mlp_block=Mlp,
|
477 |
+
layer_scale=None,
|
478 |
+
):
|
479 |
+
super().__init__()
|
480 |
+
self.norm1 = norm_layer(dim)
|
481 |
+
if counter in transformer_blocks:
|
482 |
+
self.mixer = Attention(
|
483 |
+
dim,
|
484 |
+
num_heads=num_heads,
|
485 |
+
qkv_bias=qkv_bias,
|
486 |
+
qk_norm=qk_scale,
|
487 |
+
attn_drop=attn_drop,
|
488 |
+
proj_drop=drop,
|
489 |
+
norm_layer=norm_layer,
|
490 |
+
)
|
491 |
+
else:
|
492 |
+
self.mixer = MambaVisionMixer(d_model=dim,
|
493 |
+
d_state=8,
|
494 |
+
d_conv=3,
|
495 |
+
expand=1
|
496 |
+
)
|
497 |
+
|
498 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
499 |
+
self.norm2 = norm_layer(dim)
|
500 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
501 |
+
self.mlp = Mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
502 |
+
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
|
503 |
+
self.gamma_1 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
|
504 |
+
self.gamma_2 = nn.Parameter(layer_scale * torch.ones(dim)) if use_layer_scale else 1
|
505 |
+
|
506 |
+
def forward(self, x):
|
507 |
+
x = x + self.drop_path(self.gamma_1 * self.mixer(self.norm1(x)))
|
508 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
509 |
+
return x
|
510 |
+
|
511 |
+
|
512 |
+
class MambaVisionLayer(nn.Module):
|
513 |
+
"""
|
514 |
+
MambaVision layer"
|
515 |
+
"""
|
516 |
+
|
517 |
+
def __init__(self,
|
518 |
+
dim,
|
519 |
+
depth,
|
520 |
+
num_heads,
|
521 |
+
window_size,
|
522 |
+
conv=False,
|
523 |
+
downsample=True,
|
524 |
+
mlp_ratio=4.,
|
525 |
+
qkv_bias=True,
|
526 |
+
qk_scale=None,
|
527 |
+
drop=0.,
|
528 |
+
attn_drop=0.,
|
529 |
+
drop_path=0.,
|
530 |
+
layer_scale=None,
|
531 |
+
layer_scale_conv=None,
|
532 |
+
transformer_blocks = [],
|
533 |
+
):
|
534 |
+
"""
|
535 |
+
Args:
|
536 |
+
dim: feature size dimension.
|
537 |
+
depth: number of layers in each stage.
|
538 |
+
window_size: window size in each stage.
|
539 |
+
conv: bool argument for conv stage flag.
|
540 |
+
downsample: bool argument for down-sampling.
|
541 |
+
mlp_ratio: MLP ratio.
|
542 |
+
num_heads: number of heads in each stage.
|
543 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
544 |
+
qk_scale: bool argument to scaling query, key.
|
545 |
+
drop: dropout rate.
|
546 |
+
attn_drop: attention dropout rate.
|
547 |
+
drop_path: drop path rate.
|
548 |
+
norm_layer: normalization layer.
|
549 |
+
layer_scale: layer scaling coefficient.
|
550 |
+
layer_scale_conv: conv layer scaling coefficient.
|
551 |
+
transformer_blocks: list of transformer blocks.
|
552 |
+
"""
|
553 |
+
|
554 |
+
super().__init__()
|
555 |
+
self.conv = conv
|
556 |
+
self.transformer_block = False
|
557 |
+
if conv:
|
558 |
+
self.blocks = nn.ModuleList([ConvBlock(dim=dim,
|
559 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
560 |
+
layer_scale=layer_scale_conv)
|
561 |
+
for i in range(depth)])
|
562 |
+
self.transformer_block = False
|
563 |
+
else:
|
564 |
+
self.transformer_block = True
|
565 |
+
self.blocks = nn.ModuleList([Block(dim=dim,
|
566 |
+
counter=i,
|
567 |
+
transformer_blocks=transformer_blocks,
|
568 |
+
num_heads=num_heads,
|
569 |
+
mlp_ratio=mlp_ratio,
|
570 |
+
qkv_bias=qkv_bias,
|
571 |
+
qk_scale=qk_scale,
|
572 |
+
drop=drop,
|
573 |
+
attn_drop=attn_drop,
|
574 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
575 |
+
layer_scale=layer_scale)
|
576 |
+
for i in range(depth)])
|
577 |
+
self.transformer_block = True
|
578 |
+
|
579 |
+
self.downsample = None if not downsample else Downsample(dim=dim)
|
580 |
+
self.do_gt = False
|
581 |
+
self.window_size = window_size
|
582 |
+
|
583 |
+
def forward(self, x):
|
584 |
+
_, _, H, W = x.shape
|
585 |
+
|
586 |
+
if self.transformer_block:
|
587 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
588 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
589 |
+
if pad_r > 0 or pad_b > 0:
|
590 |
+
x = torch.nn.functional.pad(x, (0,pad_r,0,pad_b))
|
591 |
+
_, _, Hp, Wp = x.shape
|
592 |
+
else:
|
593 |
+
Hp, Wp = H, W
|
594 |
+
x = window_partition(x, self.window_size)
|
595 |
+
|
596 |
+
for _, blk in enumerate(self.blocks):
|
597 |
+
x = blk(x)
|
598 |
+
if self.transformer_block:
|
599 |
+
x = window_reverse(x, self.window_size, Hp, Wp)
|
600 |
+
if pad_r > 0 or pad_b > 0:
|
601 |
+
x = x[:, :, :H, :W].contiguous()
|
602 |
+
if self.downsample is None:
|
603 |
+
return x
|
604 |
+
return self.downsample(x)
|
605 |
+
|
606 |
+
|
607 |
+
class MambaVision(nn.Module, PyTorchModelHubMixin):
|
608 |
+
"""
|
609 |
+
MambaVision,
|
610 |
+
"""
|
611 |
+
|
612 |
+
def __init__(self,
|
613 |
+
dim,
|
614 |
+
in_dim,
|
615 |
+
depths,
|
616 |
+
window_size,
|
617 |
+
mlp_ratio,
|
618 |
+
num_heads,
|
619 |
+
drop_path_rate=0.2,
|
620 |
+
in_chans=3,
|
621 |
+
num_classes=1000,
|
622 |
+
qkv_bias=True,
|
623 |
+
qk_scale=None,
|
624 |
+
drop_rate=0.,
|
625 |
+
attn_drop_rate=0.,
|
626 |
+
layer_scale=None,
|
627 |
+
layer_scale_conv=None,
|
628 |
+
**kwargs):
|
629 |
+
"""
|
630 |
+
Args:
|
631 |
+
dim: feature size dimension.
|
632 |
+
depths: number of layers in each stage.
|
633 |
+
window_size: window size in each stage.
|
634 |
+
mlp_ratio: MLP ratio.
|
635 |
+
num_heads: number of heads in each stage.
|
636 |
+
drop_path_rate: drop path rate.
|
637 |
+
in_chans: number of input channels.
|
638 |
+
num_classes: number of classes.
|
639 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
640 |
+
qk_scale: bool argument to scaling query, key.
|
641 |
+
drop_rate: dropout rate.
|
642 |
+
attn_drop_rate: attention dropout rate.
|
643 |
+
norm_layer: normalization layer.
|
644 |
+
layer_scale: layer scaling coefficient.
|
645 |
+
layer_scale_conv: conv layer scaling coefficient.
|
646 |
+
"""
|
647 |
+
super().__init__()
|
648 |
+
num_features = int(dim * 2 ** (len(depths) - 1))
|
649 |
+
self.num_classes = num_classes
|
650 |
+
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim)
|
651 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
652 |
+
self.levels = nn.ModuleList()
|
653 |
+
for i in range(len(depths)):
|
654 |
+
conv = True if (i == 0 or i == 1) else False
|
655 |
+
level = MambaVisionLayer(dim=int(dim * 2 ** i),
|
656 |
+
depth=depths[i],
|
657 |
+
num_heads=num_heads[i],
|
658 |
+
window_size=window_size[i],
|
659 |
+
mlp_ratio=mlp_ratio,
|
660 |
+
qkv_bias=qkv_bias,
|
661 |
+
qk_scale=qk_scale,
|
662 |
+
conv=conv,
|
663 |
+
drop=drop_rate,
|
664 |
+
attn_drop=attn_drop_rate,
|
665 |
+
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
|
666 |
+
downsample=(i < 3),
|
667 |
+
layer_scale=layer_scale,
|
668 |
+
layer_scale_conv=layer_scale_conv,
|
669 |
+
transformer_blocks=list(range(depths[i]//2+1, depths[i])) if depths[i]%2!=0 else list(range(depths[i]//2, depths[i])),
|
670 |
+
)
|
671 |
+
self.levels.append(level)
|
672 |
+
self.norm = nn.BatchNorm2d(num_features)
|
673 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
674 |
+
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
|
675 |
+
self.apply(self._init_weights)
|
676 |
+
|
677 |
+
def _init_weights(self, m):
|
678 |
+
if isinstance(m, nn.Linear):
|
679 |
+
trunc_normal_(m.weight, std=.02)
|
680 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
681 |
+
nn.init.constant_(m.bias, 0)
|
682 |
+
elif isinstance(m, nn.LayerNorm):
|
683 |
+
nn.init.constant_(m.bias, 0)
|
684 |
+
nn.init.constant_(m.weight, 1.0)
|
685 |
+
elif isinstance(m, LayerNorm2d):
|
686 |
+
nn.init.constant_(m.bias, 0)
|
687 |
+
nn.init.constant_(m.weight, 1.0)
|
688 |
+
elif isinstance(m, nn.BatchNorm2d):
|
689 |
+
nn.init.ones_(m.weight)
|
690 |
+
nn.init.zeros_(m.bias)
|
691 |
+
|
692 |
+
@torch.jit.ignore
|
693 |
+
def no_weight_decay_keywords(self):
|
694 |
+
return {'rpb'}
|
695 |
+
|
696 |
+
def forward_features(self, x):
|
697 |
+
x = self.patch_embed(x)
|
698 |
+
for level in self.levels:
|
699 |
+
x = level(x)
|
700 |
+
x = self.norm(x)
|
701 |
+
x = self.avgpool(x)
|
702 |
+
x = torch.flatten(x, 1)
|
703 |
+
return x
|
704 |
+
|
705 |
+
def forward(self, x):
|
706 |
+
x = self.forward_features(x)
|
707 |
+
x = self.head(x)
|
708 |
+
return x
|
709 |
+
|
710 |
+
def _load_state_dict(self,
|
711 |
+
pretrained,
|
712 |
+
strict: bool = False):
|
713 |
+
_load_checkpoint(self,
|
714 |
+
pretrained,
|
715 |
+
strict=strict)
|
716 |
+
|
717 |
+
|
718 |
+
@register_model
|
719 |
+
def mamba_vision_T(pretrained=False, **kwargs):
|
720 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_T.pth.tar")
|
721 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_T').to_dict()
|
722 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
723 |
+
model = MambaVision(depths=[1, 3, 8, 4],
|
724 |
+
num_heads=[2, 4, 8, 16],
|
725 |
+
window_size=[8, 8, 14, 7],
|
726 |
+
dim=80,
|
727 |
+
in_dim=32,
|
728 |
+
mlp_ratio=4,
|
729 |
+
resolution=224,
|
730 |
+
drop_path_rate=0.2,
|
731 |
+
**kwargs)
|
732 |
+
model.pretrained_cfg = pretrained_cfg
|
733 |
+
model.default_cfg = model.pretrained_cfg
|
734 |
+
if pretrained:
|
735 |
+
if not Path(model_path).is_file():
|
736 |
+
url = model.default_cfg['url']
|
737 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
738 |
+
model._load_state_dict(model_path)
|
739 |
+
return model
|
740 |
+
|
741 |
+
|
742 |
+
@register_model
|
743 |
+
def mamba_vision_T2(pretrained=False, **kwargs):
|
744 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_T2.pth.tar")
|
745 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_T2').to_dict()
|
746 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
747 |
+
model = MambaVision(depths=[1, 3, 11, 4],
|
748 |
+
num_heads=[2, 4, 8, 16],
|
749 |
+
window_size=[8, 8, 14, 7],
|
750 |
+
dim=80,
|
751 |
+
in_dim=32,
|
752 |
+
mlp_ratio=4,
|
753 |
+
resolution=224,
|
754 |
+
drop_path_rate=0.2,
|
755 |
+
**kwargs)
|
756 |
+
model.pretrained_cfg = pretrained_cfg
|
757 |
+
model.default_cfg = model.pretrained_cfg
|
758 |
+
if pretrained:
|
759 |
+
if not Path(model_path).is_file():
|
760 |
+
url = model.default_cfg['url']
|
761 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
762 |
+
model._load_state_dict(model_path)
|
763 |
+
return model
|
764 |
+
|
765 |
+
|
766 |
+
@register_model
|
767 |
+
def mamba_vision_S(pretrained=False, **kwargs):
|
768 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_S.pth.tar")
|
769 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_S').to_dict()
|
770 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
771 |
+
model = MambaVision(depths=[3, 3, 7, 5],
|
772 |
+
num_heads=[2, 4, 8, 16],
|
773 |
+
window_size=[8, 8, 14, 7],
|
774 |
+
dim=96,
|
775 |
+
in_dim=64,
|
776 |
+
mlp_ratio=4,
|
777 |
+
resolution=224,
|
778 |
+
drop_path_rate=0.2,
|
779 |
+
**kwargs)
|
780 |
+
model.pretrained_cfg = pretrained_cfg
|
781 |
+
model.default_cfg = model.pretrained_cfg
|
782 |
+
if pretrained:
|
783 |
+
if not Path(model_path).is_file():
|
784 |
+
url = model.default_cfg['url']
|
785 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
786 |
+
model._load_state_dict(model_path)
|
787 |
+
return model
|
788 |
+
|
789 |
+
|
790 |
+
@register_model
|
791 |
+
def mamba_vision_B(pretrained=False, **kwargs):
|
792 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_B.pth.tar")
|
793 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_B').to_dict()
|
794 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
795 |
+
model = MambaVision(depths=[3, 3, 10, 5],
|
796 |
+
num_heads=[2, 4, 8, 16],
|
797 |
+
window_size=[8, 8, 14, 7],
|
798 |
+
dim=128,
|
799 |
+
in_dim=64,
|
800 |
+
mlp_ratio=4,
|
801 |
+
resolution=224,
|
802 |
+
drop_path_rate=0.3,
|
803 |
+
layer_scale=1e-5,
|
804 |
+
layer_scale_conv=None,
|
805 |
+
**kwargs)
|
806 |
+
model.pretrained_cfg = pretrained_cfg
|
807 |
+
model.default_cfg = model.pretrained_cfg
|
808 |
+
if pretrained:
|
809 |
+
if not Path(model_path).is_file():
|
810 |
+
url = model.default_cfg['url']
|
811 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
812 |
+
model._load_state_dict(model_path)
|
813 |
+
return model
|
814 |
+
|
815 |
+
|
816 |
+
@register_model
|
817 |
+
def mamba_vision_L(pretrained=False, **kwargs):
|
818 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_L.pth.tar")
|
819 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_L').to_dict()
|
820 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
821 |
+
model = MambaVision(depths=[3, 3, 10, 5],
|
822 |
+
num_heads=[4, 8, 16, 32],
|
823 |
+
window_size=[8, 8, 14, 7],
|
824 |
+
dim=196,
|
825 |
+
in_dim=64,
|
826 |
+
mlp_ratio=4,
|
827 |
+
resolution=224,
|
828 |
+
drop_path_rate=0.3,
|
829 |
+
layer_scale=1e-5,
|
830 |
+
layer_scale_conv=None,
|
831 |
+
**kwargs)
|
832 |
+
model.pretrained_cfg = pretrained_cfg
|
833 |
+
model.default_cfg = model.pretrained_cfg
|
834 |
+
if pretrained:
|
835 |
+
if not Path(model_path).is_file():
|
836 |
+
url = model.default_cfg['url']
|
837 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
838 |
+
model._load_state_dict(model_path)
|
839 |
+
return model
|
840 |
+
|
841 |
+
|
842 |
+
@register_model
|
843 |
+
def mamba_vision_L2(pretrained=False, **kwargs):
|
844 |
+
model_path = kwargs.pop("model_path", "/tmp/mamba_vision_L2.pth.tar")
|
845 |
+
pretrained_cfg = resolve_pretrained_cfg('mamba_vision_L2').to_dict()
|
846 |
+
update_args(pretrained_cfg, kwargs, kwargs_filter=None)
|
847 |
+
model = MambaVision(depths=[3, 3, 12, 5],
|
848 |
+
num_heads=[4, 8, 16, 32],
|
849 |
+
window_size=[8, 8, 14, 7],
|
850 |
+
dim=196,
|
851 |
+
in_dim=64,
|
852 |
+
mlp_ratio=4,
|
853 |
+
resolution=224,
|
854 |
+
drop_path_rate=0.3,
|
855 |
+
layer_scale=1e-5,
|
856 |
+
layer_scale_conv=None,
|
857 |
+
**kwargs)
|
858 |
+
model.pretrained_cfg = pretrained_cfg
|
859 |
+
model.default_cfg = model.pretrained_cfg
|
860 |
+
if pretrained:
|
861 |
+
if not Path(model_path).is_file():
|
862 |
+
url = model.default_cfg['url']
|
863 |
+
torch.hub.download_url_to_file(url=url, dst=model_path)
|
864 |
+
model._load_state_dict(model_path)
|
865 |
+
return model
|