Update modeling_nvembed.py (#44)
Browse files- Update modeling_nvembed.py (ce0a909ceec6190f532840234077d048d1e24e9d)
Co-authored-by: Nihal Nayak <[email protected]>
- modeling_nvembed.py +0 -2
modeling_nvembed.py
CHANGED
|
@@ -8,7 +8,6 @@ from contextlib import nullcontext
|
|
| 8 |
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
|
| 9 |
from transformers.modeling_utils import PreTrainedModel
|
| 10 |
from transformers.models.auto import AutoTokenizer
|
| 11 |
-
from transformers.models.mistral.modeling_mistral import MISTRAL_INPUTS_DOCSTRING
|
| 12 |
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 13 |
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
| 14 |
from transformers import MistralModel, MistralConfig
|
|
@@ -39,7 +38,6 @@ class BidirectionalMistralModel(MistralModel):
|
|
| 39 |
layer.self_attn.is_causal = False
|
| 40 |
self._attn_implementation = "eager"
|
| 41 |
|
| 42 |
-
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
| 43 |
def forward(
|
| 44 |
self,
|
| 45 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 8 |
from transformers import AutoModel, PreTrainedTokenizerFast, BatchEncoding, DataCollatorWithPadding
|
| 9 |
from transformers.modeling_utils import PreTrainedModel
|
| 10 |
from transformers.models.auto import AutoTokenizer
|
|
|
|
| 11 |
from transformers.modeling_outputs import BaseModelOutputWithPast
|
| 12 |
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa
|
| 13 |
from transformers import MistralModel, MistralConfig
|
|
|
|
| 38 |
layer.self_attn.is_causal = False
|
| 39 |
self._attn_implementation = "eager"
|
| 40 |
|
|
|
|
| 41 |
def forward(
|
| 42 |
self,
|
| 43 |
input_ids: torch.LongTensor = None,
|