|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """PyTorch NemotronH model.""" | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import Any, Dict, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import CrossEntropyLoss | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import DynamicCache | 
					
						
						|  | from transformers.generation import GenerationMixin | 
					
						
						|  | from transformers.modeling_attn_mask_utils import ( | 
					
						
						|  | AttentionMaskConverter, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | ModelOutput, | 
					
						
						|  | add_code_sample_docstrings, | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | logging, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.utils.import_utils import ( | 
					
						
						|  | is_causal_conv1d_available, | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | is_mamba_2_ssm_available, | 
					
						
						|  | ) | 
					
						
						|  | from .configuration_nemotron_h import NemotronHConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_mamba_2_ssm_available(): | 
					
						
						|  | from mamba_ssm.ops.triton.selective_state_update import selective_state_update | 
					
						
						|  | from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined | 
					
						
						|  | else: | 
					
						
						|  | mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, selective_state_update = None, None, None | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  |  | 
					
						
						|  | from mamba_ssm.ops.triton.layernorm_gated import rmsnorm_fn | 
					
						
						|  | except ImportError: | 
					
						
						|  | raise ImportError("mamba-ssm is required by the Mamba model but cannot be imported") | 
					
						
						|  |  | 
					
						
						|  | if is_causal_conv1d_available(): | 
					
						
						|  | from causal_conv1d import causal_conv1d_fn, causal_conv1d_update | 
					
						
						|  | else: | 
					
						
						|  | causal_conv1d_update, causal_conv1d_fn = None, None | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from transformers.modeling_flash_attention_utils import _flash_attention_forward | 
					
						
						|  |  | 
					
						
						|  | is_fast_path_available = all( | 
					
						
						|  | ( | 
					
						
						|  | selective_state_update, | 
					
						
						|  | mamba_chunk_scan_combined, | 
					
						
						|  | mamba_split_conv1d_scan_combined, | 
					
						
						|  | causal_conv1d_fn, | 
					
						
						|  | causal_conv1d_update, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CHECKPOINT_FOR_DOC = "nvidia/Nemotron-H-56B-Base-8K" | 
					
						
						|  | _CONFIG_FOR_DOC = "NemotronHConfig" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int): | 
					
						
						|  | """ | 
					
						
						|  | Padding x tensor with `pad_size` on the seq_len dim (dim=1) | 
					
						
						|  |  | 
					
						
						|  | Assumes that we only have tensors of either size 4 or 3 | 
					
						
						|  | """ | 
					
						
						|  | pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0) | 
					
						
						|  |  | 
					
						
						|  | return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def reshape_into_chunks(input_tensor, pad_size, chunk_size): | 
					
						
						|  | """ | 
					
						
						|  | Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and | 
					
						
						|  | simultaneously splitting it into chunk sequences. | 
					
						
						|  |  | 
					
						
						|  | Assumes that we only have tensors of either size 4 or 3 | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | input_tensor = pad_tensor_by_size(input_tensor, pad_size) | 
					
						
						|  |  | 
					
						
						|  | if len(input_tensor.shape) == 3: | 
					
						
						|  |  | 
					
						
						|  | return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2]) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | return input_tensor.reshape( | 
					
						
						|  | input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def segment_sum(input_tensor): | 
					
						
						|  | """ | 
					
						
						|  | More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions. | 
					
						
						|  | """ | 
					
						
						|  | chunk_size = input_tensor.size(-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size) | 
					
						
						|  |  | 
					
						
						|  | mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1) | 
					
						
						|  | input_tensor = input_tensor.masked_fill(~mask, 0) | 
					
						
						|  |  | 
					
						
						|  | tensor_segsum = torch.cumsum(input_tensor, dim=-2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0) | 
					
						
						|  | tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf) | 
					
						
						|  | return tensor_segsum | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_mask_to_padding_states(hidden_states, attention_mask): | 
					
						
						|  | """ | 
					
						
						|  | Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66 | 
					
						
						|  | """ | 
					
						
						|  | if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: | 
					
						
						|  | dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HybridMambaAttentionDynamicCache(DynamicCache): | 
					
						
						|  | """ | 
					
						
						|  | A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache | 
					
						
						|  | (which has a constant shape regardless of seq_len). | 
					
						
						|  |  | 
					
						
						|  | This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` | 
					
						
						|  | and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor | 
					
						
						|  | For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, | 
					
						
						|  | while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). | 
					
						
						|  | For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), | 
					
						
						|  | while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, | 
					
						
						|  | and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config, batch_size, dtype=torch.float16, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dtype = dtype | 
					
						
						|  | self.hybrid_override_pattern = config.hybrid_override_pattern | 
					
						
						|  | self.has_previous_state = False | 
					
						
						|  |  | 
					
						
						|  | intermediate_size = config.mamba_num_heads * config.mamba_head_dim | 
					
						
						|  | ssm_state_size = config.ssm_state_size | 
					
						
						|  | conv_kernel_size = config.conv_kernel | 
					
						
						|  | self.conv_states = [] | 
					
						
						|  | self.ssm_states = [] | 
					
						
						|  | self.transformer_layers = [] | 
					
						
						|  | for i in range(config.num_hidden_layers): | 
					
						
						|  | if self.hybrid_override_pattern[i] == "M": | 
					
						
						|  |  | 
					
						
						|  | self.conv_states += [ | 
					
						
						|  | torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype) | 
					
						
						|  | ] | 
					
						
						|  | self.ssm_states += [ | 
					
						
						|  | torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype) | 
					
						
						|  | ] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | self.conv_states += [torch.tensor([[]] * batch_size, device=device)] | 
					
						
						|  | self.ssm_states += [torch.tensor([[]] * batch_size, device=device)] | 
					
						
						|  | self.transformer_layers.append(i) | 
					
						
						|  |  | 
					
						
						|  | self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] | 
					
						
						|  | self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] | 
					
						
						|  |  | 
					
						
						|  | def update( | 
					
						
						|  | self, | 
					
						
						|  | key_states: torch.Tensor, | 
					
						
						|  | value_states: torch.Tensor, | 
					
						
						|  | layer_idx: int, | 
					
						
						|  | cache_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, torch.Tensor]: | 
					
						
						|  |  | 
					
						
						|  | if self.key_cache[layer_idx].shape[-1] == 0: | 
					
						
						|  | self.key_cache[layer_idx] = key_states | 
					
						
						|  | self.value_cache[layer_idx] = value_states | 
					
						
						|  | else: | 
					
						
						|  | self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) | 
					
						
						|  | self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) | 
					
						
						|  |  | 
					
						
						|  | return self.key_cache[layer_idx], self.value_cache[layer_idx] | 
					
						
						|  |  | 
					
						
						|  | def reorder_cache(self, beam_idx: torch.LongTensor): | 
					
						
						|  | """Reorders the cache for beam search, given the selected beam indices.""" | 
					
						
						|  | for layer_idx in range(len(self.key_cache)): | 
					
						
						|  | device = self.key_cache[layer_idx].device | 
					
						
						|  | self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) | 
					
						
						|  | device = self.value_cache[layer_idx].device | 
					
						
						|  | self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) | 
					
						
						|  |  | 
					
						
						|  | device = self.conv_states[layer_idx].device | 
					
						
						|  | self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device)) | 
					
						
						|  | device = self.ssm_states[layer_idx].device | 
					
						
						|  | self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device)) | 
					
						
						|  |  | 
					
						
						|  | def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: | 
					
						
						|  | """Returns the sequence length of the cached states. A layer index can be optionally passed.""" | 
					
						
						|  |  | 
					
						
						|  | layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx | 
					
						
						|  | if len(self.key_cache) <= layer_idx: | 
					
						
						|  | return 0 | 
					
						
						|  | return self.key_cache[layer_idx].shape[-2] | 
					
						
						|  |  | 
					
						
						|  | def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]: | 
					
						
						|  | raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.") | 
					
						
						|  |  | 
					
						
						|  | @classmethod | 
					
						
						|  | def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache": | 
					
						
						|  | raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def update_conv_state( | 
					
						
						|  | self, layer_idx: int, new_conv_state: torch.Tensor, cache_init: bool = False | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  | if cache_init: | 
					
						
						|  | self.conv_states[layer_idx] = new_conv_state.to(self.conv_states.device) | 
					
						
						|  | else: | 
					
						
						|  | self.conv_states[layer_idx] = self.conv_states[layer_idx].roll(shifts=-1, dims=-1) | 
					
						
						|  | self.conv_states[layer_idx][:, :, -1] = new_conv_state[:, 0, :].to(self.conv_states.device) | 
					
						
						|  | return self.conv_states[layer_idx] | 
					
						
						|  |  | 
					
						
						|  | def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor): | 
					
						
						|  | self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device) | 
					
						
						|  | return self.ssm_states[layer_idx] | 
					
						
						|  |  | 
					
						
						|  | def reset(self): | 
					
						
						|  | self.conv_states.zero_() | 
					
						
						|  | self.ssm_states.zero_() | 
					
						
						|  |  | 
					
						
						|  | class MambaRMSNormGated(torch.nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, group_size, eps=1e-5): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  | self.group_size = group_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states, gate=None): | 
					
						
						|  | return rmsnorm_fn(x=hidden_states, | 
					
						
						|  | weight=self.weight, | 
					
						
						|  | bias=None, | 
					
						
						|  | z=gate, | 
					
						
						|  | eps=self.variance_epsilon, | 
					
						
						|  | group_size=self.group_size, | 
					
						
						|  | norm_before_gate=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class NemotronHMamba2Mixer(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. | 
					
						
						|  | A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) | 
					
						
						|  | ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, | 
					
						
						|  | and is why Mamba is called **selective** state spaces) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: NemotronHConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.num_heads = config.mamba_num_heads | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.ssm_state_size = config.ssm_state_size | 
					
						
						|  | self.conv_kernel_size = config.conv_kernel | 
					
						
						|  | self.intermediate_size = config.mamba_num_heads * config.mamba_head_dim | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | self.use_conv_bias = config.use_conv_bias | 
					
						
						|  | self.activation = config.mamba_hidden_act | 
					
						
						|  | self.act = ACT2FN[config.mamba_hidden_act] | 
					
						
						|  |  | 
					
						
						|  | self.layer_norm_epsilon = config.layer_norm_epsilon | 
					
						
						|  |  | 
					
						
						|  | self.n_groups = config.n_groups | 
					
						
						|  | self.head_dim = config.mamba_head_dim | 
					
						
						|  | self.chunk_size = config.chunk_size | 
					
						
						|  |  | 
					
						
						|  | self.time_step_limit = config.time_step_limit | 
					
						
						|  | self.time_step_min = config.time_step_min | 
					
						
						|  | self.time_step_max = config.time_step_max | 
					
						
						|  |  | 
					
						
						|  | self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size | 
					
						
						|  | self.conv1d = nn.Conv1d( | 
					
						
						|  | in_channels=self.conv_dim, | 
					
						
						|  | out_channels=self.conv_dim, | 
					
						
						|  | bias=config.use_conv_bias, | 
					
						
						|  | kernel_size=config.conv_kernel, | 
					
						
						|  | groups=self.conv_dim, | 
					
						
						|  | padding=config.conv_kernel - 1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | projection_size = self.intermediate_size + self.conv_dim + self.num_heads | 
					
						
						|  | self.in_proj = nn.Linear( | 
					
						
						|  | self.hidden_size, | 
					
						
						|  | projection_size, | 
					
						
						|  | bias=config.use_bias, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.dt_bias = nn.Parameter(torch.ones(self.num_heads)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | A = torch.arange(1, self.num_heads + 1) | 
					
						
						|  | self.A_log = nn.Parameter(torch.log(A)) | 
					
						
						|  | self.A_log._no_weight_decay = True | 
					
						
						|  | self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon, group_size=self.intermediate_size // self.n_groups) | 
					
						
						|  | self.D = nn.Parameter(torch.ones(self.num_heads)) | 
					
						
						|  | self.D._no_weight_decay = True | 
					
						
						|  |  | 
					
						
						|  | self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) | 
					
						
						|  | self.use_bias = config.use_bias | 
					
						
						|  |  | 
					
						
						|  | if not is_fast_path_available: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`" | 
					
						
						|  | " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and" | 
					
						
						|  | " https://github.com/Dao-AILab/causal-conv1d" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def cuda_kernels_forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | cache_params: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask) | 
					
						
						|  | projected_states = self.in_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size, seq_len, _ = hidden_states.shape | 
					
						
						|  | groups_time_state_size = self.n_groups * self.ssm_state_size | 
					
						
						|  | d_mlp = ( | 
					
						
						|  | projected_states.shape[-1] | 
					
						
						|  | - 2 * self.intermediate_size | 
					
						
						|  | - 2 * self.n_groups * self.ssm_state_size | 
					
						
						|  | - self.num_heads | 
					
						
						|  | ) // 2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if cache_params is not None and cache_position is not None and cache_position[0] > 0: | 
					
						
						|  | _, _, gate, hidden_states_B_C, dt = projected_states.squeeze(1).split( | 
					
						
						|  | [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states_B_C = causal_conv1d_update( | 
					
						
						|  | hidden_states_B_C, | 
					
						
						|  | cache_params.conv_states[self.layer_idx], | 
					
						
						|  | self.conv1d.weight.squeeze(1), | 
					
						
						|  | self.conv1d.bias, | 
					
						
						|  | self.activation, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states, B, C = torch.split( | 
					
						
						|  | hidden_states_B_C, | 
					
						
						|  | [self.intermediate_size, groups_time_state_size, groups_time_state_size], | 
					
						
						|  | dim=-1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | A = -torch.exp(self.A_log.float()) | 
					
						
						|  | A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) | 
					
						
						|  | dt = dt[:, :, None].expand(-1, -1, self.head_dim) | 
					
						
						|  | dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) | 
					
						
						|  | D = self.D[:, None, ...].expand(-1, self.head_dim) | 
					
						
						|  | B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups) | 
					
						
						|  | C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups) | 
					
						
						|  | hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim) | 
					
						
						|  | hidden_states = selective_state_update( | 
					
						
						|  | cache_params.ssm_states[self.layer_idx], | 
					
						
						|  | hidden_states_reshaped, | 
					
						
						|  | dt, | 
					
						
						|  | A, | 
					
						
						|  | B, | 
					
						
						|  | C, | 
					
						
						|  | D, | 
					
						
						|  | z=None, | 
					
						
						|  | dt_bias=dt_bias, | 
					
						
						|  | dt_softplus=True, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim) | 
					
						
						|  | hidden_states = self.norm(hidden_states, gate) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | out = self.out_proj(hidden_states)[:, None, ...] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | A = -torch.exp(self.A_log.float()) | 
					
						
						|  | dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.training and cache_params is None: | 
					
						
						|  | out = mamba_split_conv1d_scan_combined( | 
					
						
						|  | projected_states, | 
					
						
						|  | self.conv1d.weight.squeeze(1), | 
					
						
						|  | self.conv1d.bias, | 
					
						
						|  | self.dt_bias, | 
					
						
						|  | A, | 
					
						
						|  | D=self.D, | 
					
						
						|  | chunk_size=self.chunk_size, | 
					
						
						|  | seq_idx=None, | 
					
						
						|  | activation=self.activation, | 
					
						
						|  | rmsnorm_weight=self.norm.weight, | 
					
						
						|  | rmsnorm_eps=self.norm.variance_epsilon, | 
					
						
						|  | outproj_weight=self.out_proj.weight, | 
					
						
						|  | outproj_bias=self.out_proj.bias, | 
					
						
						|  | headdim=self.head_dim, | 
					
						
						|  | ngroups=self.n_groups, | 
					
						
						|  | norm_before_gate=False, | 
					
						
						|  | return_final_states=False, | 
					
						
						|  | **dt_limit_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | _, _, gate, hidden_states_B_C, dt = projected_states.split( | 
					
						
						|  | [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if cache_params is not None: | 
					
						
						|  | hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2) | 
					
						
						|  | conv_states = nn.functional.pad( | 
					
						
						|  | hidden_states_B_C_transposed, | 
					
						
						|  | (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0), | 
					
						
						|  | ) | 
					
						
						|  | cache_params.update_conv_state( | 
					
						
						|  | layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.activation not in ["silu", "swish"]: | 
					
						
						|  | hidden_states_B_C = self.act( | 
					
						
						|  | self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2) | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states_B_C = causal_conv1d_fn( | 
					
						
						|  | x=hidden_states_B_C.transpose(1, 2), | 
					
						
						|  | weight=self.conv1d.weight.squeeze(1), | 
					
						
						|  | bias=self.conv1d.bias, | 
					
						
						|  | activation=self.activation, | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  | hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask) | 
					
						
						|  | hidden_states, B, C = torch.split( | 
					
						
						|  | hidden_states_B_C, | 
					
						
						|  | [self.intermediate_size, groups_time_state_size, groups_time_state_size], | 
					
						
						|  | dim=-1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scan_output, ssm_state = mamba_chunk_scan_combined( | 
					
						
						|  | hidden_states.view(batch_size, seq_len, -1, self.head_dim), | 
					
						
						|  | dt, | 
					
						
						|  | A, | 
					
						
						|  | B.view(batch_size, seq_len, self.n_groups, -1), | 
					
						
						|  | C.view(batch_size, seq_len, self.n_groups, -1), | 
					
						
						|  | chunk_size=self.chunk_size, | 
					
						
						|  | D=self.D, | 
					
						
						|  | z=None, | 
					
						
						|  | seq_idx=None, | 
					
						
						|  | return_final_states=True, | 
					
						
						|  | dt_bias=self.dt_bias, | 
					
						
						|  | dt_softplus=True, | 
					
						
						|  | **dt_limit_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ssm_state is not None and cache_params is not None: | 
					
						
						|  | cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state) | 
					
						
						|  |  | 
					
						
						|  | scan_output = scan_output.view(batch_size, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scan_output = self.norm(scan_output, gate) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | out = self.out_proj(scan_output) | 
					
						
						|  | return out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def torch_forward(self, input_states, cache_params: Optional[HybridMambaAttentionDynamicCache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None): | 
					
						
						|  | batch_size, seq_len, _ = input_states.shape | 
					
						
						|  | dtype = input_states.dtype | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_states = apply_mask_to_padding_states(input_states, attention_mask) | 
					
						
						|  | projected_states = self.in_proj(input_states) | 
					
						
						|  | d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size-self.num_heads) // 2 | 
					
						
						|  | _, _, gate, hidden_states_B_C, dt = projected_states.split( | 
					
						
						|  | [d_mlp, d_mlp, self.intermediate_size,  self.conv_dim, self.num_heads], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if cache_params is not None and cache_position is not None and cache_position[0] > 0: | 
					
						
						|  | cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=hidden_states_B_C, cache_init=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_B_C = torch.sum( | 
					
						
						|  | conv_states * self.conv1d.weight.squeeze(1), dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | if self.use_conv_bias: | 
					
						
						|  | hidden_states_B_C = hidden_states_B_C + self.conv1d.bias | 
					
						
						|  | hidden_states_B_C = self.act(hidden_states_B_C) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | if cache_params is not None: | 
					
						
						|  | hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2) | 
					
						
						|  | conv_states = nn.functional.pad( | 
					
						
						|  | hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0) | 
					
						
						|  | ) | 
					
						
						|  | cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)) | 
					
						
						|  |  | 
					
						
						|  | hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask) | 
					
						
						|  | hidden_states, B, C = torch.split( | 
					
						
						|  | hidden_states_B_C, | 
					
						
						|  | [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], | 
					
						
						|  | dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | A = -torch.exp(self.A_log.float()) | 
					
						
						|  | if cache_params is not None and cache_position is not None and cache_position[0] > 0: | 
					
						
						|  |  | 
					
						
						|  | cache_device = cache_params.ssm_states.device | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dt = dt[:, 0, :][:, None, ...] | 
					
						
						|  | dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype)) | 
					
						
						|  | dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1]) | 
					
						
						|  | A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  | dA = (torch.exp(dt[..., None] * A)).to(device=cache_device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | B = B.reshape(batch_size, self.n_groups, -1)[..., None, :] | 
					
						
						|  | B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous() | 
					
						
						|  | B = B.reshape(batch_size, -1, B.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  | dB = dt[..., None] * B[..., None, :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim) | 
					
						
						|  | dBx = (dB * hidden_states[..., None]).to(device=cache_device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cache_params.update_ssm_state( | 
					
						
						|  | layer_idx=self.layer_idx, | 
					
						
						|  | new_ssm_state=cache_params.ssm_states[self.layer_idx] * dA + dBx | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | C = C.reshape(batch_size, self.n_groups, -1)[..., None, :] | 
					
						
						|  | C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous() | 
					
						
						|  | C = C.reshape(batch_size, -1, C.shape[-1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype) | 
					
						
						|  |  | 
					
						
						|  | ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) | 
					
						
						|  | C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) | 
					
						
						|  | y = torch.bmm(ssm_states_reshaped, C_reshaped) | 
					
						
						|  | y = y.view(batch_size, self.num_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | D = self.D[..., None].expand(self.D.shape[0], self.head_dim) | 
					
						
						|  | y = (y + hidden_states * D).to(y.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | y = y.reshape(batch_size, -1)[:, None, ...] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | dt = nn.functional.softplus(dt + self.dt_bias) | 
					
						
						|  | dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1]) | 
					
						
						|  | hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float() | 
					
						
						|  | B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() | 
					
						
						|  | C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float() | 
					
						
						|  | B = B.repeat(1, 1, self.num_heads // self.n_groups, 1) | 
					
						
						|  | C = C.repeat(1, 1, self.num_heads // self.n_groups, 1) | 
					
						
						|  | pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size | 
					
						
						|  |  | 
					
						
						|  | D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states * dt[..., None] | 
					
						
						|  | A = A.to(hidden_states.dtype) * dt | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | A = A.permute(0, 3, 1, 2) | 
					
						
						|  | A_cumsum = torch.cumsum(A, dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | L = torch.exp(segment_sum(A)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :] | 
					
						
						|  | G = G_intermediate.sum(dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None] | 
					
						
						|  | M = M_intermediate.sum(dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) | 
					
						
						|  | B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None] | 
					
						
						|  | states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if cache_params is not None and cache_position is not None and cache_position[0] > 0: | 
					
						
						|  | previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device) | 
					
						
						|  | else: | 
					
						
						|  | previous_states = torch.zeros_like(states[:, :1]) | 
					
						
						|  | states = torch.cat([previous_states, states], dim=1) | 
					
						
						|  | decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)))) | 
					
						
						|  | decay_chunk = decay_chunk.transpose(1, 3) | 
					
						
						|  | new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1) | 
					
						
						|  | states, ssm_state = new_states[:, :-1], new_states[:, -1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | state_decay_out = torch.exp(A_cumsum) | 
					
						
						|  | C_times_states = (C[..., None, :] * states[:, :, None, ...]) | 
					
						
						|  | state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1) | 
					
						
						|  | Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | y = Y_diag + Y_off | 
					
						
						|  |  | 
					
						
						|  | y = y.reshape(batch_size, -1, self.num_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | y = y + D_residual | 
					
						
						|  |  | 
					
						
						|  | if pad_size > 0: | 
					
						
						|  | y = y[:, :seq_len, :, :] | 
					
						
						|  | y = y.reshape(batch_size, seq_len, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ssm_state is not None and cache_params is not None: | 
					
						
						|  | cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state) | 
					
						
						|  |  | 
					
						
						|  | scan_output = self.norm(y, gate) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | contextualized_states = self.out_proj(scan_output.to(dtype)) | 
					
						
						|  | return contextualized_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | cache_params: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | ): | 
					
						
						|  | if is_fast_path_available and "cuda" in self.in_proj.weight.device.type: | 
					
						
						|  | return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask) | 
					
						
						|  | dtype = hidden_states.dtype | 
					
						
						|  | if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1: | 
					
						
						|  |  | 
					
						
						|  | hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype) | 
					
						
						|  |  | 
					
						
						|  | return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NemotronHRMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | NemotronHRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  |  | 
					
						
						|  | return (self.weight.to(torch.float32) * hidden_states).to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  | class NemotronHBlock(nn.Module): | 
					
						
						|  | def __init__(self, config, layer_idx): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | self.residual_in_fp32 = config.residual_in_fp32 | 
					
						
						|  | self.norm = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.block_type = config.layers_block_type[layer_idx] | 
					
						
						|  | if self.block_type == "mamba": | 
					
						
						|  | self.mixer = NemotronHMamba2Mixer(config, layer_idx=layer_idx) | 
					
						
						|  | elif self.block_type == "attention": | 
					
						
						|  | self.mixer = NEMOTRONH_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) | 
					
						
						|  | elif self.block_type == "mlp": | 
					
						
						|  | self.mixer = NemotronHMLP(config, layer_idx=layer_idx) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Invalid layer pattern {config.hybrid_override_pattern[layer_idx]}") | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | cache_params: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | ): | 
					
						
						|  | with torch.cuda.stream(torch.cuda.default_stream(hidden_states.device)): | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype)) | 
					
						
						|  | if self.residual_in_fp32: | 
					
						
						|  | residual = residual.to(torch.float32) | 
					
						
						|  |  | 
					
						
						|  | if self.block_type == "mamba": | 
					
						
						|  | hidden_states = self.mixer( | 
					
						
						|  | hidden_states, cache_params=cache_params, cache_position=cache_position | 
					
						
						|  | ) | 
					
						
						|  | elif self.block_type == "attention": | 
					
						
						|  | hidden_states = self.mixer( | 
					
						
						|  | hidden_states, cache_position=cache_position | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = hidden_states[0] | 
					
						
						|  | elif self.block_type == "mlp": | 
					
						
						|  | hidden_states = self.mixer( | 
					
						
						|  | hidden_states | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Invalid block_type: {self.block_type}") | 
					
						
						|  |  | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NemotronHMLP(nn.Module): | 
					
						
						|  | def __init__(self, config, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
						
						|  | "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.intermediate_size = config.intermediate_size | 
					
						
						|  | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) | 
					
						
						|  | self.act_fn = ACT2FN[config.mlp_hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return self.down_proj(self.act_fn(self.up_proj(x))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NemotronHAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: NemotronHConfig, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
						
						|  | "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | if config.head_dim is not None: | 
					
						
						|  | self.head_dim = config.head_dim | 
					
						
						|  | else: | 
					
						
						|  | self.head_dim = config.hidden_size // config.num_attention_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) | 
					
						
						|  | self.o_proj = nn.Linear(self.head_dim * self.num_heads, self.hidden_size, bias=config.attention_bias) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  |  | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and attention_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  | is_causal = True if causal_mask is None and q_len > 1 else False | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=causal_mask, | 
					
						
						|  | dropout_p=self.attention_dropout if self.training else 0.0, | 
					
						
						|  | is_causal=is_causal, | 
					
						
						|  | ) | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.view(bsz, q_len, self.num_heads * self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NemotronHFlashAttention2(NemotronHAttention): | 
					
						
						|  | """ | 
					
						
						|  | Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  | dropout_rate = 0.0 if not self.training else self.attention_dropout | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.q_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attn_output = _flash_attention_forward( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | q_len, | 
					
						
						|  | dropout=dropout_rate, | 
					
						
						|  | sliding_window=getattr(self.config, "sliding_window", None), | 
					
						
						|  | is_causal=self.is_causal, | 
					
						
						|  | use_top_left_mask=self._flash_attn_uses_top_left_mask, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NemotronHSdpaAttention(NemotronHAttention): | 
					
						
						|  | """ | 
					
						
						|  | Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
						
						|  | SDPA API. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "NemotronHModel is using NemotronHSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
						
						|  | 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states = self.q_proj(hidden_states) | 
					
						
						|  | key_states = self.k_proj(hidden_states) | 
					
						
						|  | value_states = self.v_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = attention_mask | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and attention_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_causal = True if self.is_causal and causal_mask is None and q_len > 1 else False | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=causal_mask, | 
					
						
						|  | dropout_p=self.attention_dropout if self.training else 0.0, | 
					
						
						|  | is_causal=is_causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.view(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | NEMOTRONH_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": NemotronHAttention, | 
					
						
						|  | "flash_attention_2": NemotronHFlashAttention2, | 
					
						
						|  | "sdpa": NemotronHSdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class NemotronHPreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | 
					
						
						|  | models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_class = NemotronHConfig | 
					
						
						|  | base_model_prefix = "backbone" | 
					
						
						|  | _no_split_modules = ["NemotronHBlock"] | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _is_stateful = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | """Initialize the weights.""" | 
					
						
						|  | if isinstance(module, NemotronHMamba2Mixer): | 
					
						
						|  | module.A_log._no_weight_decay = True | 
					
						
						|  | module.D._no_weight_decay = True | 
					
						
						|  |  | 
					
						
						|  | dt = torch.exp( | 
					
						
						|  | torch.rand(self.config.mamba_num_heads) | 
					
						
						|  | * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min)) | 
					
						
						|  | + math.log(self.config.time_step_min) | 
					
						
						|  | ).clamp(min=self.config.time_step_floor) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | inv_dt = dt + torch.log(-torch.expm1(-dt)) | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | module.dt_bias.copy_(inv_dt) | 
					
						
						|  | module.dt_bias._no_reinit = True | 
					
						
						|  |  | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | if not getattr(module.bias, "_no_reinit", False): | 
					
						
						|  | nn.init.zeros_(module.bias) | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | nn.init.normal_(module.weight, std=self.config.initializer_range) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.rescale_prenorm_residual: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for name, p in module.named_parameters(): | 
					
						
						|  | if name in ["out_proj.weight"]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | nn.init.kaiming_uniform_(p, a=math.sqrt(5)) | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | p /= math.sqrt(self.config.num_hidden_layers) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  |  | 
					
						
						|  | class NemotronHOutput(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Class for the NemotronH model outputs. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | 
					
						
						|  | Sequence of hidden-states at the output of the last layer of the model. | 
					
						
						|  | cache_params (`HybridMambaAttentionDynamicCache`): | 
					
						
						|  | The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to | 
					
						
						|  | avoid providing the old `input_ids`. | 
					
						
						|  |  | 
					
						
						|  | Includes both the State space model state matrices after the selective scan, and the Convolutional states | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | last_hidden_state: Optional[torch.FloatTensor] = None | 
					
						
						|  | cache_params: Optional[HybridMambaAttentionDynamicCache] = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  |  | 
					
						
						|  | class NemotronHCausalLMOutput(ModelOutput): | 
					
						
						|  | """ | 
					
						
						|  | Base class for causal language model (or autoregressive) outputs. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | 
					
						
						|  | Language modeling loss (for next-token prediction). | 
					
						
						|  | logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | 
					
						
						|  | Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | 
					
						
						|  | cache_params (`HybridMambaAttentionDynamicCache`): | 
					
						
						|  | The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to | 
					
						
						|  | avoid providing the old `input_ids`. | 
					
						
						|  |  | 
					
						
						|  | Includes both the State space model state matrices after the selective scan, and the Convolutional states | 
					
						
						|  | hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | 
					
						
						|  | Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | 
					
						
						|  | one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | 
					
						
						|  |  | 
					
						
						|  | Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | loss: Optional[torch.FloatTensor] = None | 
					
						
						|  | logits: Optional[torch.FloatTensor] = None | 
					
						
						|  | cache_params: Optional[HybridMambaAttentionDynamicCache] = None | 
					
						
						|  | hidden_states: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  | attentions: Optional[Tuple[torch.FloatTensor]] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | NEMOTRONH_START_DOCSTRING = r""" | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`NemotronHConfig`]): Model configuration class with all the parameters of the model. | 
					
						
						|  | Initializing with a config file does not load the weights associated with the model, only the | 
					
						
						|  | configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | NEMOTRONH_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. | 
					
						
						|  |  | 
					
						
						|  | If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as | 
					
						
						|  | `input_ids`. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. | 
					
						
						|  | cache_params (`HybridMambaAttentionDynamicCache`, *optional*): | 
					
						
						|  | If passed along, the model uses the previous state in all the blocks (which will give the output for the | 
					
						
						|  | `input_ids` provided as if the model add `state_input_ids + input_ids` as context). | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | cache_position (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | The position of the current input in the cache. This is used to ensure that the cache is correctly updated. | 
					
						
						|  | If `cache_params` is passed, `cache_position` should also be passed. | 
					
						
						|  | attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare NemotronH Model transformer outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | NEMOTRONH_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class NemotronHModel(NemotronHPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size) | 
					
						
						|  | self.layers = nn.ModuleList([NemotronHBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)]) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self.norm_f = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) | 
					
						
						|  |  | 
					
						
						|  | self._register_load_state_dict_pre_hook(self.load_hook) | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def load_hook(self, state_dict, prefix, *args): | 
					
						
						|  | for k in state_dict: | 
					
						
						|  | if "embedding." in k: | 
					
						
						|  | state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k) | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, new_embeddings): | 
					
						
						|  | self.embeddings = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=NemotronHOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | cache_params: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[Tuple, NemotronHOutput]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False) | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if (input_ids is None) ^ (inputs_embeds is not None): | 
					
						
						|  | raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embeddings(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training and use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if use_cache and cache_params is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "NemotronH requires an initialized `NemotronHHybridDynamicCache` to return a cache. None was " | 
					
						
						|  | "provided, so no cache will be returned." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  | if cache_position is None: | 
					
						
						|  | cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device) | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | position_ids = cache_position.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) | 
					
						
						|  | mamba_mask = self._update_mamba_mask(attention_mask, cache_position) | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for layer_idx, mixer_block in enumerate(self.layers): | 
					
						
						|  |  | 
					
						
						|  | if mixer_block.block_type == "mamba": | 
					
						
						|  | layer_mask = mamba_mask | 
					
						
						|  | elif mixer_block.block_type == "attention": | 
					
						
						|  | layer_mask = causal_mask | 
					
						
						|  | elif mixer_block.block_type == "mlp": | 
					
						
						|  | layer_mask = None | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Invalid block_type: {self.block_type}") | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | hidden_states = self._gradient_checkpointing_func( | 
					
						
						|  | mixer_block.__call__, hidden_states, cache_params, cache_position, layer_mask | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | hidden_states = mixer_block( | 
					
						
						|  | hidden_states, | 
					
						
						|  | cache_params=cache_params, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | attention_mask=layer_mask, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm_f(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None) | 
					
						
						|  |  | 
					
						
						|  | return NemotronHOutput( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | cache_params=cache_params if use_cache else None, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _update_causal_mask(self, attention_mask, input_tensor, cache_position): | 
					
						
						|  | if self.config._attn_implementation == "flash_attention_2": | 
					
						
						|  | if attention_mask is not None and 0.0 in attention_mask: | 
					
						
						|  | return attention_mask | 
					
						
						|  | return None | 
					
						
						|  |  | 
					
						
						|  | dtype, device = input_tensor.dtype, input_tensor.device | 
					
						
						|  | min_dtype = torch.finfo(dtype).min | 
					
						
						|  | sequence_length = input_tensor.shape[1] | 
					
						
						|  | target_length = cache_position[-1] + 1 | 
					
						
						|  |  | 
					
						
						|  | causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | 
					
						
						|  | if sequence_length != 1: | 
					
						
						|  | causal_mask = torch.triu(causal_mask, diagonal=1) | 
					
						
						|  | causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | 
					
						
						|  | causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | causal_mask = causal_mask.clone() | 
					
						
						|  | if attention_mask.dim() == 2: | 
					
						
						|  | mask_length = attention_mask.shape[-1] | 
					
						
						|  | padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) | 
					
						
						|  | causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | self.config._attn_implementation == "sdpa" | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and attention_mask.device.type == "cuda" | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | 
					
						
						|  |  | 
					
						
						|  | return causal_mask | 
					
						
						|  |  | 
					
						
						|  | def _update_mamba_mask(self, attention_mask, cache_position): | 
					
						
						|  | """ | 
					
						
						|  | No need for zeroing states when | 
					
						
						|  | 1. Cached forward | 
					
						
						|  | 2. Attending to all inputs | 
					
						
						|  | """ | 
					
						
						|  | mamba_mask = attention_mask | 
					
						
						|  | if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)): | 
					
						
						|  | mamba_mask = None | 
					
						
						|  | return mamba_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The NEMOTRONH Model transformer with a language modeling head on top (linear layer with weights not tied to the input | 
					
						
						|  | embeddings). | 
					
						
						|  | """, | 
					
						
						|  | NEMOTRONH_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class NemotronHForCausalLM(NemotronHPreTrainedModel, GenerationMixin): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.backbone = NemotronHModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.backbone.get_input_embeddings() | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, new_embeddings): | 
					
						
						|  | return self.backbone.set_input_embeddings(new_embeddings) | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | cache_position=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | empty_past_kv = past_key_values is None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not empty_past_kv: | 
					
						
						|  | if ( | 
					
						
						|  | inputs_embeds is not None | 
					
						
						|  | or cache_position[-1] >= input_ids.shape[1] | 
					
						
						|  | ): | 
					
						
						|  | input_ids = input_ids[:, -cache_position.shape[0] :] | 
					
						
						|  | elif input_ids.shape[1] != cache_position.shape[0]: | 
					
						
						|  | input_ids = input_ids[:, cache_position] | 
					
						
						|  | else: | 
					
						
						|  | past_key_values = HybridMambaAttentionDynamicCache( | 
					
						
						|  | self.config, input_ids.shape[0], self.dtype, device=self.device | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if not empty_past_kv: | 
					
						
						|  | position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and empty_past_kv: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  | model_inputs = {"input_ids": input_ids.contiguous()} | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": use_cache, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "logits_to_keep": self.config.num_logits_to_keep, | 
					
						
						|  | "cache_position": cache_position, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=NemotronHCausalLMOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | cache_params: Optional[HybridMambaAttentionDynamicCache] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | cache_position: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Union[Tuple, NemotronHCausalLMOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | 
					
						
						|  | `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | 
					
						
						|  | are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | 
					
						
						|  | """ | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  |  | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | nemotron_h_outputs = self.backbone( | 
					
						
						|  | input_ids, | 
					
						
						|  | cache_params=cache_params, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | cache_position=cache_position, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = nemotron_h_outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float() | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  |  | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + nemotron_h_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return NemotronHCausalLMOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | cache_params=nemotron_h_outputs.cache_params, | 
					
						
						|  | hidden_states=nemotron_h_outputs.hidden_states, | 
					
						
						|  | attentions=nemotron_h_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |