ankitapasad commited on
Commit
c770bfa
·
verified ·
1 Parent(s): a6fd0a2

added bsize for open-asr eval

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -383,7 +383,7 @@ canary-180m-flash <br>
383
  ## Training Dataset:
384
 
385
  The canary-180m-flash model is trained on a total of 85K hrs of speech data. It consists of 31K hrs of public data, 20K hrs collected by [Suno](https://suno.ai/), and 34K hrs of in-house data.
386
- The datasets below include conversations, videos from the web and audiobook recordings.
387
 
388
  **Data Collection Method:**
389
  * Human <br>
@@ -476,7 +476,7 @@ In both ASR and AST experiments, predictions were generated using beam search wi
476
 
477
  The ASR performance is measured with word error rate (WER), and we process the groundtruth and predicted text with [whisper-normalizer](https://pypi.org/project/whisper-normalizer/).
478
 
479
- WER on [HuggingFace OpenASR leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard):
480
 
481
  | **Version** | **Model** | **RTFx** | **AMI** | **GigaSpeech** | **LS Clean** | **LS Other** | **Earnings22** | **SPGISpech** | **Tedlium** | **Voxpopuli** |
482
  |:---------:|:-----------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
 
383
  ## Training Dataset:
384
 
385
  The canary-180m-flash model is trained on a total of 85K hrs of speech data. It consists of 31K hrs of public data, 20K hrs collected by [Suno](https://suno.ai/), and 34K hrs of in-house data.
386
+ The datasets below include conversations, videos from the web, and audiobook recordings.
387
 
388
  **Data Collection Method:**
389
  * Human <br>
 
476
 
477
  The ASR performance is measured with word error rate (WER), and we process the groundtruth and predicted text with [whisper-normalizer](https://pypi.org/project/whisper-normalizer/).
478
 
479
+ WER on [HuggingFace OpenASR leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard) evaluated with a batch size of 128:
480
 
481
  | **Version** | **Model** | **RTFx** | **AMI** | **GigaSpeech** | **LS Clean** | **LS Other** | **Earnings22** | **SPGISpech** | **Tedlium** | **Voxpopuli** |
482
  |:---------:|:-----------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|