File size: 22,927 Bytes
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ae031
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
62ae031
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
62ae031
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb9578a
e2ff9b4
22c8ac2
 
 
09445ea
22c8ac2
 
 
 
 
 
 
6aede0b
 
 
 
 
22c8ac2
 
 
 
 
 
 
6aede0b
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddfd59d
 
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aede0b
 
 
 
 
 
 
 
 
 
 
 
 
dcb2530
6aede0b
 
 
 
 
22c8ac2
 
 
 
 
 
 
 
 
62ae031
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aede0b
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09445ea
22c8ac2
 
 
 
 
 
 
62ae031
22c8ac2
09445ea
 
 
 
 
62ae031
 
09445ea
 
 
 
 
22c8ac2
 
 
 
62ae031
22c8ac2
 
 
 
62ae031
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
62ae031
22c8ac2
 
 
 
62ae031
22c8ac2
 
 
 
 
 
62ae031
22c8ac2
 
 
 
62ae031
22c8ac2
 
 
 
 
 
62ae031
22c8ac2
 
 
 
62ae031
22c8ac2
 
 
 
 
62ae031
22c8ac2
f3ccd7e
22c8ac2
 
 
 
62ae031
22c8ac2
 
 
 
 
 
62ae031
22c8ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6aede0b
22c8ac2
 
 
 
 
6aede0b
22c8ac2
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
---
license: cc-by-4.0
language:
- en
- de
- es
- fr
library_name: nemo
datasets:
- librispeech_asr
- fisher_corpus
- Switchboard-1
- WSJ-0
- WSJ-1
- National-Singapore-Corpus-Part-1
- National-Singapore-Corpus-Part-6
- vctk
- voxpopuli
- europarl
- multilingual_librispeech
- mozilla-foundation/common_voice_8_0
- MLCommons/peoples_speech
thumbnail: null
tags:
- automatic-speech-recognition
- automatic-speech-translation
- speech
- audio
- Transformer
- FastConformer
- Conformer
- pytorch
- NeMo
- hf-asr-leaderboard
widget:
- example_title: Librispeech sample 1
  src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
  src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: canary-1b-flash
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (other)
      type: librispeech_asr
      config: other
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 2.87
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: SPGI Speech
      type: kensho/spgispeech
      config: test
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 1.95
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 16.1
      type: mozilla-foundation/common_voice_16_1
      config: en
      split: test
      args:
        language: en
    metrics:
    - name: Test WER (En)
      type: wer
      value: 6.99
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 16.1
      type: mozilla-foundation/common_voice_16_1
      config: de
      split: test
      args:
        language: de
    metrics:
    - name: Test WER (De)
      type: wer
      value: 4.09
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 16.1
      type: mozilla-foundation/common_voice_16_1
      config: es
      split: test
      args:
        language: es
    metrics:
    - name: Test WER (ES)
      type: wer
      value: 3.62
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 16.1
      type: mozilla-foundation/common_voice_16_1
      config: fr
      split: test
      args:
        language: fr
    metrics:
    - name: Test WER (Fr)
      type: wer
      value: 6.15
  - task:
      type: Automatic Speech Translation
      name: automatic-speech-translation
    dataset:
      name: FLEURS
      type: google/fleurs
      config: en_us
      split: test
      args:
        language: en-de
    metrics:
    - name: Test BLEU (En->De)
      type: bleu
      value: 32.27
  - task:
      type: Automatic Speech Translation
      name: automatic-speech-translation
    dataset:
      name: FLEURS
      type: google/fleurs
      config: en_us
      split: test
      args:
        language: en-de
    metrics:
    - name: Test BLEU (En->Es)
      type: bleu
      value: 22.6
  - task:
      type: Automatic Speech Translation
      name: automatic-speech-translation
    dataset:
      name: FLEURS
      type: google/fleurs
      config: en_us
      split: test
      args:
        language: en-de
    metrics:
    - name: Test BLEU (En->Fr)
      type: bleu
      value: 41.22
  - task:
      type: Automatic Speech Translation
      name: automatic-speech-translation
    dataset:
      name: FLEURS
      type: google/fleurs
      config: de_de
      split: test
      args:
        language: de-en
    metrics:
    - name: Test BLEU (De->En)
      type: bleu
      value: 35.5
  - task:
      type: Automatic Speech Translation
      name: automatic-speech-translation
    dataset:
      name: FLEURS
      type: google/fleurs
      config: es_419
      split: test
      args:
        language: es-en
    metrics:
    - name: Test BLEU (Es->En)
      type: bleu
      value: 23.32
  - task:
      type: Automatic Speech Translation
      name: automatic-speech-translation
    dataset:
      name: FLEURS
      type: google/fleurs
      config: fr_fr
      split: test
      args:
        language: fr-en
    metrics:
    - name: Test BLEU (Fr->En)
      type: bleu
      value: 33.42
  - task:
      type: Automatic Speech Translation
      name: automatic-speech-translation
    dataset:
      name: COVOST
      type: covost2
      config: de_de
      split: test
      args:
        language: de-en
    metrics:
    - name: Test BLEU (De->En)
      type: bleu
      value: 39.33
  - task:
      type: Automatic Speech Translation
      name: automatic-speech-translation
    dataset:
      name: COVOST
      type: covost2
      config: es_419
      split: test
      args:
        language: es-en
    metrics:
    - name: Test BLEU (Es->En)
      type: bleu
      value: 41.86
  - task:
      type: Automatic Speech Translation
      name: automatic-speech-translation
    dataset:
      name: COVOST
      type: covost2
      config: fr_fr
      split: test
      args:
        language: fr-en
    metrics:
    - name: Test BLEU (Fr->En)
      type: bleu
      value: 41.43
metrics:
- wer
- bleu
- comet
pipeline_tag: automatic-speech-recognition
---

# Canary 1B Flash

<style>
img {
 display: inline;
}
</style>

## Description:
NVIDIA NeMo Canary Flash [1] is a family of multilingual multi-tasking models based on Canary architecture [2] that achieve state-of-the-art performance on multiple speech benchmarks. With 883 million parameters and an inference speed of more than 1000 RTFx (on open-asr-leaderboard datasets), canary-1b-flash supports automatic speech-to-text recognition (ASR) in four languages (English, German, French, Spanish) and translation from English to German/French/Spanish and from German/French/Spanish to English with or without punctuation and capitalization (PnC). Additionally, canary-1b-flash offers an experimental feature for word-level and segment-level timestamps in English, German, French, and Spanish.
This model is released under the permissive CC-BY-4.0 license and is available for commercial use.


## Model Architecture:
Canary is an encoder-decoder model with FastConformer [3] Encoder and Transformer Decoder [4]. With audio features extracted from the encoder, task tokens such as \<target language\>, \<task\>, \<toggle timestamps\> and \<toggle PnC\> are fed into the Transformer Decoder to trigger the text generation process. Canary uses a concatenated tokenizer [5] from individual SentencePiece [6] tokenizers of each language, which makes it easy to scale up to more languages. The canary-1b-flash model has 32 encoder layers and 4 decoder layers, leading to a total of 883M parameters. For more details about the architecture, please refer to [1].

## NVIDIA NeMo

To train, fine-tune or transcribe with canary-1b-flash, you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo).

## How to Use this Model

The model is available for use in the NeMo Framework [7], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

Please refer to [our tutorial](https://github.com/NVIDIA/NeMo/blob/main/tutorials/asr/Canary_Multitask_Speech_Model.ipynb) for more details.

A few inference examples are listed below:

### Loading the Model

```python
from nemo.collections.asr.models import EncDecMultiTaskModel
# load model
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b-flash')
# update decode params
decode_cfg = canary_model.cfg.decoding
decode_cfg.beam.beam_size = 1
canary_model.change_decoding_strategy(decode_cfg)
```

## Input: 
**Input Type(s):** Audio <br>
**Input Format(s):** .wav or .flac files<br>
**Input Parameters(s):** 1D <br>
**Other Properties Related to Input:** 16000 Hz Mono-channel Audio, Pre-Processing Not Needed <br>

Input to canary-1b-flash can be either a list of paths to audio files or a jsonl manifest file.

If the input is a list of paths, canary-1b-flash assumes that the audio is English and transcribes it. I.e., canary-1b-flash default behavior is English ASR. 
```python
output = canary_model.transcribe(
    ['path1.wav', 'path2.wav'],
    batch_size=16,  # batch size to run the inference with
    pnc='yes',        # generate output with Punctuation and Capitalization
)

predicted_text_1 = output[0].text

```

canary-1b-flash can also generate word and segment level timestamps
```python
output = canary_model.transcribe(
  ['filepath.wav'],
  timestamps='yes',  # generate output with timestamps
)

predicted_text = output[0].text
word_level_timestamps = output[0].timestamp['word']
segment_level_timestamps = output[0].timestamp['segment']

```
For audio files longer than 10 seconds, we recommend using longform inference script (explained in next section) with `chunk_len_in_secs=10.0` to generate timestamps. 


To use canary-1b-flash for transcribing other supported languages or perform Speech-to-Text translation or provide word-level timestamps, specify the input as jsonl manifest file, where each line in the file is a dictionary containing the following fields: 

```yaml
# Example of a line in input_manifest.json
{
    "audio_filepath": "/path/to/audio.wav",  # path to the audio file
    "source_lang": "en",  # language of the audio input, set `source_lang`==`target_lang` for ASR, choices=['en','de','es','fr']
    "target_lang": "en",  # language of the text output, choices=['en','de','es','fr']
    "pnc": "yes",  # whether to have PnC output, choices=['yes', 'no']
    "timestamp": "yes", # whether to output word-level timestamps, choices=['yes', 'no']
}
```

and then use:
```python
output = canary_model.transcribe(
    "<path to input manifest file>",
    batch_size=16,  # batch size to run the inference with
)
```

### Longform inference with Canary-1B-flash:
Canary models are designed to handle input audio smaller than 40 seconds. In order to handle longer audios, NeMo includes [speech_to_text_aed_chunked_infer.py](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_chunked_inference/aed/speech_to_text_aed_chunked_infer.py) script that handles chunking, performs inference on the chunked files, and stitches the transcripts.

The script will perform inference on all `.wav` files in `audio_dir`. Alternatively you can also pass a path to a manifest file as shown above. The decoded output will be saved at `output_json_path`.

```
python scripts/speech_to_text_aed_chunked_infer.py \
    pretrained_name="nvidia/canary-1b-flash" \
    audio_dir=$audio_dir \
    output_filename=$output_json_path \
    chunk_len_in_secs=40.0 \
    batch_size=1 \
    decoding.beam.beam_size=1 \
    timestamps=False
```

**Note** that for longform inference with timestamps, it is recommended to use `chunk_len_in_secs` of 10 seconds.


## Output:
**Output Type(s):** Text <br>
**Output Format:** Text output as a string (w/ timestamps) depending on the task chosen for decoding <br> 
**Output Parameters:** 1-Dimensional text string <br>
**Other Properties Related to Output:** May Need Inverse Text Normalization; Does Not Handle Special Characters <br>


## Software Integration:
**Runtime Engine(s):** 
* NeMo - main <br>

**Supported Hardware Microarchitecture Compatibility:** <br>
* [NVIDIA Ampere] <br>
* [NVIDIA Blackwell] <br>
* [NVIDIA Jetson]  <br>
* [NVIDIA Hopper] <br>
* [NVIDIA Lovelace] <br>
* [NVIDIA Pascal] <br>
* [NVIDIA Turing] <br>
* [NVIDIA Volta] <br>

**[Preferred/Supported] Operating System(s):** <br>
* [Linux] <br>
* [Linux 4 Tegra] <br>
* [Windows] <br>

## Model Version(s): 
canary-1b-flash <br>


# Training and Evaluation Datasets: 

## Training Dataset:

The canary-1b-flash model is trained on a total of 85K hrs of speech data. It consists of 31K hrs of public data, 20K hrs collected by [Suno](https://suno.ai/), and 34K hrs of in-house data. 
The datasets below include conversations, videos from the web and audiobook recordings.

**Data Collection Method:**
* Human <br>

**Labeling Method:**
* Hybrid: Human, Automated <br>

The constituents of public data are as follows. 

#### English (25.5k hours)
- Librispeech 960 hours
- Fisher Corpus
- Switchboard-1 Dataset
- WSJ-0 and WSJ-1
- National Speech Corpus (Part 1, Part 6)
- VCTK
- VoxPopuli (EN)
- Europarl-ASR (EN)
- Multilingual Librispeech (MLS EN) - 2,000 hour subset
- Mozilla Common Voice (v7.0)
- People's Speech - 12,000 hour subset
- Mozilla Common Voice (v11.0)  - 1,474 hour subset

#### German (2.5k hours)
- Mozilla Common Voice (v12.0)  - 800 hour subset
- Multilingual Librispeech (MLS DE) - 1,500 hour subset
- VoxPopuli (DE) - 200 hr subset

#### Spanish (1.4k hours)
- Mozilla Common Voice (v12.0)  - 395 hour subset
- Multilingual Librispeech (MLS ES) - 780 hour subset
- VoxPopuli (ES) - 108 hour subset
- Fisher  - 141 hour subset

#### French (1.8k hours)
- Mozilla Common Voice (v12.0)  - 708 hour subset
- Multilingual Librispeech (MLS FR) - 926 hour subset
- VoxPopuli (FR) - 165 hour subset


## Evaluation Dataset:

**Data Collection Method:** <br>
* Human <br>

**Labeling Method:** <br>
* Human <br>

Automatic Speech Recognition: 
* [HuggingFace OpenASR Leaderboard evaluation sets](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
* [MLS](https://huggingface.co/datasets/facebook/multilingual_librispeech)
* [MCV] (https://commonvoice.mozilla.org/en/datasets)

Automatic Speech Translation:
* [FLEURS](https://huggingface.co/datasets/google/fleurs)
* [COVOST-v2](https://github.com/facebookresearch/covost)
* [mExpresso](https://huggingface.co/facebook/seamless-expressive#mexpresso-multilingual-expresso)

Timestamp Prediction:
* [Librispeech](https://www.openslr.org/12)

Hallucination Robustness:
* [MUSAN](https://www.openslr.org/17/) 48 hrs eval set

Noise Robustness:
* [Librispeech](https://www.openslr.org/12)

Model Fairness:
* [Casual Conversations Dataset](https://arxiv.org/abs/2104.02821)

## Training

Canary-1B-Flash is trained using the NVIDIA NeMo Framework [7] for a total of 200K steps with 2D bucketing [1] and optimal batch sizes set using OOMptimizer [8].The model is trained on 128 NVIDIA A100 80GB GPUs. 
The model can be trained using this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/speech_multitask/speech_to_text_aed.py) and [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/speech_multitask/fast-conformer_aed.yaml).

The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).

## Inference:
**Engine:** NVIDIA NeMo <br>
**Test Hardware :** <br>
* A6000 <br>
* A100 <br>
* V100 <br>

## Performance

For ASR and AST experiments, predictions were generated using greedy decoding. Note that utterances shorter than 1 second are symmetrically zero-padded upto 1 second during evaluation.  

### English ASR Performance (w/o PnC) 

The ASR performance is measured with word error rate (WER), and we process the groundtruth and predicted text with [whisper-normalizer](https://pypi.org/project/whisper-normalizer/).

WER on [HuggingFace OpenASR leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard):

| **Version** | **Model**     | **RTFx**   | **AMI**   | **GigaSpeech**   | **LS Clean**   | **LS Other**   | **Earnings22**   | **SPGISpech**   | **Tedlium**   | **Voxpopuli**   |
|:---------:|:-----------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| nemo-main  | canary-1b-flash | 1045.75 | 13.11 | 9.85 | 1.48 | 2.87 | 12.79 | 1.95 | 3.12 | 5.63 |

#### Inference speed on different systems
We profiled inference speed on the OpenASR benchmark (batch_size=128) using the [real-time factor](https://github.com/NVIDIA/DeepLearningExamples/blob/master/Kaldi/SpeechRecognition/README.md#metrics) (RTFx) to quantify throughput. 

| **Version** | **Model**     | **System**   | **RTFx**   |
|:-----------:|:-------------:|:------------:|:----------:|
| nemo-main | canary-1b-flash | NVIDIA A100 | 1045.75 |
| nemo-main | canary-1b-flash | NVIDIA H100 | 1669.07 |



### Multilingual ASR Performance

WER on [MLS](https://huggingface.co/datasets/facebook/multilingual_librispeech) test set:

| **Version** | **Model**  | **De**   | **Es**   | **Fr**   |
|:---------:|:-----------:|:------:|:------:|:------:|
| nemo-main   | canary-1b-flash | 4.36 | 2.69 | 4.47 |

WER on [MCV-16.1](https://commonvoice.mozilla.org/en/datasets) test set:
| **Version** | **Model**  |  **En**   | **De**   | **Es**   | **Fr**   |
|:---------:|:-----------:|:------:|:------:|:------:|:------:|
| nemo-main   | canary-1b-flash | 6.99 | 4.09 | 3.62 | 6.15 |


More details on evaluation can be found at [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)

### AST Performance

We evaluate AST performance with [BLEU score](https://lightning.ai/docs/torchmetrics/stable/text/sacre_bleu_score.html) and [COMET score](https://aclanthology.org/2020.emnlp-main.213/), and use native annotations with punctuation and capitalization in the datasets.

[FLEURS](https://huggingface.co/datasets/google/fleurs) test set:

BLEU score:
| **Version** | **Model** | **En->De** | **En->Es** | **En->Fr** | **De->En** | **Es->En** | **Fr->En** |
|:-----------:|:---------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
| nemo-main       | canary-1b-flash | 	32.27   |  22.6   |   41.22    |   35.5   |   23.32    |   33.42    |

COMET score:
| **Version** | **Model** | **En->De** | **En->Es** | **En->Fr** | **De->En** | **Es->En** | **Fr->En** |
|:-----------:|:---------:|:----------:|:----------:|:----------:|:----------:|:----------:|:----------:|
| nemo-main       | canary-1b-flash | 	0.8114   |  0.8118   |   0.8165    |   0.8546   |   0.8228   |   0.8475    |

[COVOST-v2](https://github.com/facebookresearch/covost) test set:

BLEU score:
| **Version** | **Model** | **De->En** | **Es->En** | **Fr->En** |
|:-----------:|:---------:|:----------:|:----------:|:----------:|
| nemo-main       | canary-1b-flash |   39.33   |    41.86    |   41.43    |

COMET score:
| **Version** | **Model** | **De->En** | **Es->En** | **Fr->En** |
|:-----------:|:---------:|:----------:|:----------:|:----------:|
| nemo-main       | canary-1b-flash |   0.8553   |    0.8585    |   0.8511    |

[mExpresso](https://huggingface.co/facebook/seamless-expressive#mexpresso-multilingual-expresso) test set:

BLEU score:
| **Version** | **Model** | **En->De** | **En->Es** | **En->Fr** |
|:-----------:|:---------:|:----------:|:----------:|:----------:|
| nemo-main       | canary-1b-flash |   22.91    |   35.69   |   27.85   |

COMET score:
| **Version** | **Model** | **En->De** | **En->Es** | **En->Fr** |
|:-----------:|:---------:|:----------:|:----------:|:----------:|
| nemo-main       | canary-1b-flash |   0.7889    |   0.8211   |   0.7910   |

### Timestamp Prediction
F1-score on [Librispeech Test sets](https://www.openslr.org/12) at collar value of 200ms
| **Version** | **Model** | **test-clean** | **test-other** |
|:-----------:|:---------:|:----------:|:----------:|
| nemo-main       | canary-1b-flash |   95.5    |   93.5   |


### Hallucination Robustness
Number of characters per minute on [MUSAN](https://www.openslr.org/17) 48 hrs eval set
| **Version** | **Model** | **# of character per minute** |
|:-----------:|:---------:|:----------:|
| nemo-main       | canary-1b-flash |   60.92   |

### Noise Robustness
WER on [Librispeech Test Clean](https://www.openslr.org/12) at different SNR (signal to noise ratio) levels of additive white noise

| **Version** | **Model** | **SNR 10** | **SNR 5** | **SNR 0** | **SNR -5** |
|:-----------:|:---------:|:----------:|:----------:|:----------:|:----------:|
| nemo-main       | canary-1b-flash |    2.34   |   3.69   |   8.84   |    29.71  |

## Model Fairness Evaluation

As outlined in the paper "Towards Measuring Fairness in AI: the Casual Conversations Dataset" [9], we assessed the canary-1b-flash model for fairness. The model was evaluated on the CausalConversations-v1 dataset, and the results are reported as follows:

### Gender Bias:

| Gender | Male | Female | N/A | Other |
| :--- | :--- | :--- | :--- | :--- |
| Num utterances | 19325 | 24532 | 926 | 33 |
| % WER | 14.66 | 12.44 | 17.17 | 27.56 |

### Age Bias:

| Age Group | (18-30) | (31-45) | (46-85) | (1-100) |
| :--- | :--- | :--- | :--- | :--- |
| Num utterances | 15956 | 14585 | 13349 | 43890 |
| % WER | 13.18 | 13.45 | 13.64 | 13.41 |

(Error rates for fairness evaluation are determined by normalizing both the reference and predicted text, similar to the methods used in the evaluations found at https://github.com/huggingface/open_asr_leaderboard.)

## License/Terms of Use: 
canary-1b-flash is released under the CC-BY-4.0 license. By using this model, you are agreeing to the [terms and conditions](https://choosealicense.com/licenses/cc-by-4.0/) of the license. <br>

## References:
[1] [Training and Inference Efficiency of Encoder-Decoder Speech Models](https://arxiv.org/abs/2503.05931)

[2] [Less is More: Accurate Speech Recognition & Translation without Web-Scale Data](https://www.isca-archive.org/interspeech_2024/puvvada24_interspeech.pdf)

[3] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10389701)

[4] [Attention is All You Need](https://arxiv.org/abs/1706.03762)

[5] [Unified Model for Code-Switching Speech Recognition and Language Identification Based on Concatenated Tokenizer](https://aclanthology.org/2023.calcs-1.7.pdf)

[6] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)

[7] [NVIDIA NeMo Framework](https://github.com/NVIDIA/NeMo)

[8] [EMMeTT: Efficient Multimodal Machine Translation Training](https://arxiv.org/abs/2409.13523)

[9] [Towards Measuring Fairness in AI: the Casual Conversations Dataset](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9634168)


## Ethical Considerations:
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.  When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.  
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).