obiwit commited on
Commit
f9c7bb0
·
verified ·
1 Parent(s): 0f8fd93

Model save

Browse files
Files changed (4) hide show
  1. README.md +52 -193
  2. all_results.json +4 -17
  3. train_results.json +4 -4
  4. trainer_state.json +0 -0
README.md CHANGED
@@ -1,209 +1,68 @@
1
  ---
2
- language: en
3
- model-index:
4
- - name: obiwit/llama3.2-3b-dpo-mini
5
- results:
6
- - task:
7
- type: preference_evaluation
8
- dataset:
9
- name: criteria-faireval
10
- type: obiwit/criteria-faireval
11
- metrics:
12
- - type: accuracy
13
- value: 0.5402380952380952
14
  ---
15
 
16
- # Model Card for obiwit/llama3.2-3b-dpo-mini
17
 
18
- <!-- Provide a quick summary of what the model is/does. -->
 
19
 
 
20
 
 
 
21
 
22
- ## Model Details
 
 
 
 
23
 
24
- ### Model Description
25
 
26
- <!-- Provide a longer summary of what this model is. -->
27
 
 
28
 
 
29
 
30
- - **Developed by:** [More Information Needed]
31
- - **Funded by [optional]:** [More Information Needed]
32
- - **Shared by [optional]:** [More Information Needed]
33
- - **Model type:** [More Information Needed]
34
- - **Language(s) (NLP):** en
35
- - **License:** [More Information Needed]
36
- - **Finetuned from model [optional]:** [More Information Needed]
37
 
38
- ### Model Sources [optional]
39
 
40
- <!-- Provide the basic links for the model. -->
41
 
42
- - **Repository:** [More Information Needed]
43
- - **Paper [optional]:** [More Information Needed]
44
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
45
 
46
- ## Uses
47
-
48
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
49
-
50
- ### Direct Use
51
-
52
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
53
-
54
- [More Information Needed]
55
-
56
- ### Downstream Use [optional]
57
-
58
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
59
-
60
- [More Information Needed]
61
-
62
- ### Out-of-Scope Use
63
-
64
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
65
-
66
- [More Information Needed]
67
-
68
- ## Bias, Risks, and Limitations
69
-
70
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
71
-
72
- [More Information Needed]
73
-
74
- ### Recommendations
75
-
76
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
77
-
78
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
79
-
80
- ## How to Get Started with the Model
81
-
82
- Use the code below to get started with the model.
83
-
84
- [More Information Needed]
85
-
86
- ## Training Details
87
-
88
- ### Training Data
89
-
90
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
91
-
92
- [More Information Needed]
93
-
94
- ### Training Procedure
95
-
96
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
97
-
98
- #### Preprocessing [optional]
99
-
100
- [More Information Needed]
101
-
102
-
103
- #### Training Hyperparameters
104
-
105
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
106
-
107
- #### Speeds, Sizes, Times [optional]
108
-
109
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
110
-
111
- [More Information Needed]
112
-
113
- ## Evaluation
114
-
115
- <!-- This section describes the evaluation protocols and provides the results. -->
116
-
117
- ### Testing Data, Factors & Metrics
118
-
119
- #### Testing Data
120
-
121
- <!-- This should link to a Dataset Card if possible. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Factors
126
-
127
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
128
-
129
- [More Information Needed]
130
-
131
- #### Metrics
132
-
133
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
134
-
135
- [More Information Needed]
136
-
137
- ### Results
138
-
139
- [More Information Needed]
140
-
141
- #### Summary
142
-
143
-
144
-
145
- ## Model Examination [optional]
146
-
147
- <!-- Relevant interpretability work for the model goes here -->
148
-
149
- [More Information Needed]
150
-
151
- ## Environmental Impact
152
-
153
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
154
-
155
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
156
-
157
- - **Hardware Type:** [More Information Needed]
158
- - **Hours used:** [More Information Needed]
159
- - **Cloud Provider:** [More Information Needed]
160
- - **Compute Region:** [More Information Needed]
161
- - **Carbon Emitted:** [More Information Needed]
162
-
163
- ## Technical Specifications [optional]
164
-
165
- ### Model Architecture and Objective
166
-
167
- [More Information Needed]
168
-
169
- ### Compute Infrastructure
170
-
171
- [More Information Needed]
172
-
173
- #### Hardware
174
-
175
- [More Information Needed]
176
-
177
- #### Software
178
-
179
- [More Information Needed]
180
-
181
- ## Citation [optional]
182
-
183
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
184
-
185
- **BibTeX:**
186
-
187
- [More Information Needed]
188
-
189
- **APA:**
190
-
191
- [More Information Needed]
192
-
193
- ## Glossary [optional]
194
-
195
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
196
-
197
- [More Information Needed]
198
-
199
- ## More Information [optional]
200
-
201
- [More Information Needed]
202
-
203
- ## Model Card Authors [optional]
204
-
205
- [More Information Needed]
206
-
207
- ## Model Card Contact
208
-
209
- [More Information Needed]
 
1
  ---
2
+ base_model: CriteriaPO/llama3.2-3b-sft
3
+ library_name: transformers
4
+ model_name: llama3.2-3b-dpo-mini
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - dpo
9
+ licence: license
 
 
 
 
10
  ---
11
 
12
+ # Model Card for llama3.2-3b-dpo-mini
13
 
14
+ This model is a fine-tuned version of [CriteriaPO/llama3.2-3b-sft](https://huggingface.co/CriteriaPO/llama3.2-3b-sft).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
+ ## Quick start
18
 
19
+ ```python
20
+ from transformers import pipeline
21
 
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="obiwit/llama3.2-3b-dpo-mini", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
 
28
+ ## Training procedure
29
 
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bborges/CriteriaPreferences/runs/reql6e82)
31
 
32
+ This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
33
 
34
+ ### Framework versions
35
 
36
+ - TRL: 0.12.2
37
+ - Transformers: 4.46.3
38
+ - Pytorch: 2.1.2+cu121
39
+ - Datasets: 3.1.0
40
+ - Tokenizers: 0.20.3
 
 
41
 
42
+ ## Citations
43
 
44
+ Cite DPO as:
45
 
46
+ ```bibtex
47
+ @inproceedings{rafailov2023direct,
48
+ title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
49
+ author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
50
+ year = 2023,
51
+ booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
52
+ url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
53
+ editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
54
+ }
55
+ ```
56
 
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all_results.json CHANGED
@@ -1,22 +1,9 @@
1
  {
2
  "epoch": 0.9999360981532366,
3
- "eval_logits/chosen": -2.921875,
4
- "eval_logits/rejected": -3.078125,
5
- "eval_logps/chosen": -296.0,
6
- "eval_logps/rejected": -576.0,
7
- "eval_loss": 0.27326104044914246,
8
- "eval_rewards/accuracies": 0.8810483813285828,
9
- "eval_rewards/chosen": -1.71875,
10
- "eval_rewards/margins": 2.96875,
11
- "eval_rewards/rejected": -4.6875,
12
- "eval_runtime": 1472.2304,
13
- "eval_samples": 55582,
14
- "eval_samples_per_second": 37.702,
15
- "eval_steps_per_second": 0.59,
16
  "total_flos": 0.0,
17
- "train_loss": 0.2751994705882784,
18
- "train_runtime": 76988.6649,
19
  "train_samples": 1001516,
20
- "train_samples_per_second": 13.009,
21
- "train_steps_per_second": 0.102
22
  }
 
1
  {
2
  "epoch": 0.9999360981532366,
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  "total_flos": 0.0,
4
+ "train_loss": 0.2718314818565587,
5
+ "train_runtime": 68698.2546,
6
  "train_samples": 1001516,
7
+ "train_samples_per_second": 14.578,
8
+ "train_steps_per_second": 0.114
9
  }
train_results.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "epoch": 0.9999360981532366,
3
  "total_flos": 0.0,
4
- "train_loss": 0.2751994705882784,
5
- "train_runtime": 76988.6649,
6
  "train_samples": 1001516,
7
- "train_samples_per_second": 13.009,
8
- "train_steps_per_second": 0.102
9
  }
 
1
  {
2
  "epoch": 0.9999360981532366,
3
  "total_flos": 0.0,
4
+ "train_loss": 0.2718314818565587,
5
+ "train_runtime": 68698.2546,
6
  "train_samples": 1001516,
7
+ "train_samples_per_second": 14.578,
8
+ "train_steps_per_second": 0.114
9
  }
trainer_state.json CHANGED
The diff for this file is too large to render. See raw diff